Все Тут Online
Все Тут Online
Новые сообщения
Все сообщения за последних 24 часа
Все сообщения за последнюю неделю
Расширенный Поиск

   
Меню сайта:
Главная
Форум
Чат
- Online приложения:
- Игры
- Выбор стиля:
- FAQ
- Для начинающих

Вернуться   Все Тут Online > Общение > Инет-новости > Наше здоровье
Ответ
 
Опции темы Опции просмотра
Старый 25.12.2008, 12:47   #1
Galina
Гость
 

Сообщений: n/a
По умолчанию Гены... что в них?

И тут гены поработали

Великая наука генетика распадается на много специальностей – например, медицинская генетика, молекулярная генетика, нейрогенетика, иммуногенетика. Есть у нее и ветвь, ориентированная на анализ связей между наследственной информацией и характером поведения (как животных, так и человека). Она так и называется – поведенческая генетика. Ее основателем считается замечательный английский антрополог и психолог Френсис Гальтон (к слову, родственник Чарльза Дарвина), который первым стал систематически исследовать наследственные аспекты человеческой одаренности.

Интересно, что он приступил к этой работе еще в 60-е годы 19 века, всего через несколько лет после того, как Грегор Мендель начал эксперименты с горохом, которые привели его к открытию законов генетики.

То, что генетические особенности создают предрасположенность к определенным формам поведения, сейчас вполне общепризнано. Некоторые специалисты даже полагают, что общественные реакции человека обусловлены его генами никак не менее, чем наполовину – а вторая половина приходится на воспитание и среду. В последние годы в научной литературе обсуждается гипотеза, согласно которой наше отношение к другим людям в какой-то степени находится под влиянием их (а не только наших!) генов. В теории она выглядит весьма заманчиво, однако до сих пор ей недоставало экспериментальных подтверждений.

Теперь акции этой идеи повысились благодаря эксперименту преподавателя Мичиганского университета Александры Барт (S. Alexandra Burt). Она отобрала для него свыше 200 незнакомых друг с другом студентов (одних только юношей) и разделила их на две группы примерно одинаковой численности. Обе группы по отдельности встретились в лаборатории для свободного общения часовой продолжительности. Каждый испытуемый позднее заполнил анкету, которая позволила судить, кто из партнеров по встрече ему особо понравился. Те, кого называли чаще прочих, были сочтены лидерами популярности.

Александра Барт хотела проверить, найдется ли у этих молодых людей хоть одна общая генетическая особенность. И она ее, в самом деле, обнаружила. Оказалось, что самые популярные студенты обладают специфической версией одного из генов, задействованных в работе серотонина – вещества, участвующего в передаче химических сигналов между нервными клетками. Наш организм производит несколько десятков таких соединений-посредников, которые в совокупности называются нейромедиаторами. Как серьезное перепроизводство, так и резкий дефицит тех или иных нейромедиаторов приводят к многочисленным расстройствам центральной нервной системы.

О влиянии серотонина на поведение известно уже немало. И оно весьма разнообразно. Так, при росте концентрации этого нейромедиатора человек становится более целеустремленным и лучше концентрируется на выполнении поставленных задач. Но только до поры до времени – дальнейшее увеличение секреции серотонина создает риск развития психоза навязчивых состояний. Недостаток серотонина делает людей чрезмерно импульсивными.

Но вернемся к эксперименту. Доктор Барт выяснила, что у чемпионов популярности выявленный ген в ходе своей работы стимулирует готовность нарушать устоявшиеся правила общения, иначе говоря, способствует раскованности в социальных контактах. В беседе с Русской службой «Голоса Америки» она особо подчеркнула, что речь тут вовсе не идет о каких-то преступных склонностях. Юноши-лидеры во время сессий просто вели себя свободней других – легче вступали в дискуссии, проявляли живость в разговоре и лучше реагировали на шутки. Она полагает, что именно эта поведенческая особенность как раз и оказалась привлекательной для большинства участников встреч. Эта информация содержится в ее статье, которую в апреле будущего года опубликует Journal of Personality and Social Psychology.

Алексей Левин, «Голос Америки»
  Ответить с цитированием
Старый 25.12.2008, 12:48   #2
Galina
Гость
 

Сообщений: n/a
По умолчанию

Гены артистизма

Изучая генетическую основу творчества, нейробиологи из Университета Торонто (University of Toronto) определили 2 гена, которые задействованы в исполнительском искусстве.

Эти два гена (DRD4 и COMT) участвуют в передаче дофамина, химического переносчика сигналов между нервными клетками головного мозга. Определенные варианты этих генов обнаружены у 15 из 58 профессиональных танцоров, музыкантов и актеров (т.е. почти у четверти обследованных), тогда как в контрольной группе, которая состояла из 36 человек, в том или ином исполнительстве не замеченных, те же варианты встретились лишь однажды.

Обследование головного мозга с визуализацией, которое провели со всеми испытуемыми, так называемый функциональный имиджинг, показал у артистов большую, чем в контрольной группе, активность лобной доли, которая играет критическую роль в процессах запоминания и одновременной манипуляции различной информацией. Интерпретируя эти данные, ученые допускают, что наблюдаемое неравенство двух групп может быть отчасти обусловлено многолетней практикой артистов, но она лишь дополняет генетические преимущества исполнителей. И, как говорит один из авторов исследования Лаура Петитто (Laura Petitto), «с творческими достижениями скорее могут быть связаны комбинации генетических вариантов, чем сами специфические генетические варианты».

Наряду с поисками дополнительных вариантов генов, вовлеченных в творческую деятельность, канадские ученые намерены охватить своими будущими исследованиями признанных виртуозов, артистов, находящихся на вершине исполнительского мастерства. Результаты уже проведенного исследования были представлены на прошедшей недавно ежегодной встрече американского Нейробиологического Общества (Society for Neuroscience) в Вашингтоне

Марина Аствацатурян, «Эхо Москвы»
  Ответить с цитированием
Старый 25.12.2008, 12:49   #3
Galina
Гость
 

Сообщений: n/a
По умолчанию

На генной гуще

Несколько лет назад один из сотрудников Newsweek прошел тест на генетическую предрасположенность к болезням. Результаты оказались неутешительными, и он отправился к кардиологу. «На что жалуемся?» - спросил врач. Узнав, что на прогнозы генетиков, он посмотрел на корреспондента так, как, наверное, смотрел булгаковский профессор Кузьмин на буфетчика Сокова, напуганного предсказаниями Коровьева. «Сейчас из достоверных рук узнал, что в феврале будущего года умру от рака печени. Умоляю остановить», - скулил персонаж «Мастера и Маргариты».

«Ну, я не знаю. Бросьте курить, что ли», - наконец ответил медик корреспонденту. Корреспондент разочарованно попрощался: он только что написал обстоятельную статью (см. «Русский Newsweek» №15 за 2005 г.) о медико-генетических тестах и рассчитывал, что врач примет меры. А врач с облегчением вздохнул: сама идея лечить не болезни, а предсказанные какими-то генетиками предрасположенности, наверное, показалась ему еретической.

Прошло три года. Медицинская генетика сделала огромный шаг навстречу пациенту: генетические тесты опираются на серьезную научную базу. Один из них - ДНК-анализ компании 23andMe, позволяющий любому человеку узнать свои генетические предрасположенности за $399, - в октябре был даже признан журналом Time «изобретением года».

Проблема в том, что новая индустрия так и не преодолела главное препятствие - кризис доверия. Медицинская генетика так бурно развивается, что прикладная медицина за ней просто не поспевает: лечащие врачи и генетики почти не сотрудничают, и вообще непонятно, готово ли общество к таким откровениям. Как поведут себя люди, получив результаты на руки? Станут серьезнее относиться к своему здоровью или просто выбросят бумажку в урну, убедив себя в том, что всё это неправда?

Американская фирма Navigenics вместе с Институтом Скриппса обещают ответить на эти вопросы. В октябре они начали изучать, как генетический диагноз влияет на поведение пациентов. Но результаты будут только в 2028 г. Это исследование - часть амбициозной программы нового поколения генетиков. «Сегодня медицинская генетика играет незначительную роль: в США, например, менее тысячи специалистов, и это очень мало. Важно сменить парадигму - наука должна приносить пользу всем, предсказывать и предотвращать болезни сердца, диабет и другие распространенные недуги», - говорит главный медицинский специалист Navigenics Вэнс Вэньер.

Через 20 лет, когда исследование завершится, медицина, скорее всего, изменится до неузнаваемости. И возможно, в этом ей поможет еще один проект, стартовавший в октябре. Он называется «Личный геном» (Personal Genome Project), его участники намереваются создать первую в своем роде базу с медицинской и генетической информацией о 100 000 добровольцах. Уникальность базы в том, что она полностью открыта. Люди не привыкли рассказывать миру о своих болезнях: обычно в эти тайны посвящают только лечащих врачей. То же самое относится и к генетическим данным. Но для ученых эти сведения бесценны. Чтобы привлечь добровольцев, организаторы проекта сами открыли миру свою ДНК и медицинскую историю.

Гены открытого доступа

Основной объект изучения в генетических тестах - однонуклеотидные полиморфизмы, или снипы (от англ. SNP - single nucleotide polymorphism). Снипы - это различия между генами в одном нуклеотиде (букве в генетическом алфавите), возникающие в результате случайных мутаций. Установлено, что многие снипы влияют на подверженность человека различным заболеваниям. Для того чтобы их выявить, надо проводить масштабные статистические исследования и сопоставлять геномы пациентов с их состоянием здоровья.

«Это как изучение языка, - говорит член совета директоров компании 23andMe Эстер Дайсон. - Вот я знаю сколько-то русских слов. Я могу спросить дорогу, но не могу прочитать “Войну и мир”». Так и ученые: знают несколько соответствий между снипами и болезнями, но читать геном как книгу о здоровье не могут. «“Личный геном” будет огромной непрочитанной книгой с подстрочным переводом, - развивает метафору Дайсон. - Постепенно сопоставляя снипы с болезнями, мы будем учиться читать всё лучше и лучше».

Проект начался с личного примера Эстер Дайсон и еще девяти известных ученых и общественных деятелей: их данные уже появились в сети. «Меня все спрашивают, как это я решилась на такой шаг, - говорит Дайсон. - А я, признаться, не вижу в нем ничего особенного». Участники проекта хотят изменить общественное мнение - показать, что свои данные необязательно хранить в тайне.

По мнению профессора Гарвардского университета Джорджа Чёрча, руководителя, а также участника №1 «Личного генома», на первых порах людей будет привлекать как раз необычность мероприятия: каждый хочет почувствовать себя героем. Профессор рассказывает, что заявок уже 7000, и предлагает корреспонденту Newsweek присоединиться. Выясняется, правда, что предпочтение отдается пожилым участникам. «У них и болезней побольше, - мечтательно вздыхает Чёрч, - и дети уже взрослые, тоже источник данных».

И Чёрч, и Дайсон одобряют исследование Navigenics и считают необходимым выяснить, насколько пациенты готовы после генетической диагностики менять свой образ жизни. «Я вот, правда, его не меняла, но тест всё равно был полезен. Я хотя бы перестала смущаться: я и так не налегала на большие яблочные штрудели с мороженым, в отличие от некоторых, - Дайсон многозначительно смотрит на тарелку корреспондента Newsweek, - но чувствовала себя при этом глуповато. А теперь знаю, что в моем случае действительно лучше не есть их, и спокойна». То ли воздержание от штруделей так полезно, то ли снипы благоприятны, но 57-летняя Дайсон стала дублером космического туриста Чарльза Симони и утверждает, что перегрузки в 4g даже приятны.

Тест на болезненность

Возможно, у исследования Navigenics появится еще одна цель. По крайней мере, так считает Стивен Мерфи - президент фирмы Helix Health, которая помогает пациентам интерпретировать результаты генетических тестов и получать необходимое лечение.

Он говорит, что опросы пациентов помогут понять, не нарушается ли в этой области врачебный принцип «не навреди». Мерфи - известный скептик, яростно критикующий многие компании, особенно 23andMe. Он признает, что генетические тесты - дело полезное и нужное, но считает, что бизнесмены неправильно их позиционируют и тем самым вводят пациентов в заблуждение.

«Смысл имеют лишь клинически валидные тесты, - объясняет он, - а не те, которые выбрасываются на рынок, лишь только появилась одна статья, указывающая на некоторую корреляцию между снипом и заболеванием». Валидным тестом Мерфи признает, например, анализ на давно открытую мутацию BRCA1, с очень высокой вероятностью вызывающую рак груди. Более 30 исследований и большое число проанализированных случаев позволяют считать эти данные надежными. «А 23andMe опирается на исследования, рассматривающие менее 1000 случаев, - возмущается Мерфи. - Риск ложного результата очень высок». (Скептики сравнивают недостаточно проверенные тесты с гаданием на хрустальном шаре, по итогам которого тоже можно обратиться к врачу.) Профессор Владислав Баранов из НИИ акушерства и гинекологии имени Отта считает, что говорить о пользе генетического тестирования не позволяет отсутствие проспективных - то есть проверяющих прогнозы - исследований. «Необходимо проводить тесты в какой-нибудь большой группе, делать прогнозы, а через несколько лет смотреть, насколько они оправдаются, - уверен Баранов. - Такие исследования уже ведутся в отношении бронхиальной астмы, остеопороза и врожденной тромбофилии».

На сайте 23andMe подробно описано, на каких исследованиях базируются эти тесты, возражает Дайсон. Там же указано, какие считаются надежными (23 штуки), а какие не очень (68 штук). 23andMe, Navigenics и прочие подчеркивают, что оказывают не медицинские услуги, а информационные и образовательные. Однако грань слишком тонка. По мнению Мерфи, фирмы, официально заявляя одно, на самом деле дают понять, что их рекомендации имеют медицинскую ценность, а это едва ли не преступно. В июне калифорнийские власти потребовали, чтобы 13 компаний, в том числе 23andMe и Navigenics, прекратили предлагать генетические тесты напрямую потребителям. К августу обе фирмы всё же получили необходимые лицензии (23andMe пришлось для этого нанять врача) и добились того, чтобы их деятельность была признана законной.

«Наши данные точны, - говорит Дайсон, - неточности могут возникать при их интерпретации». Генетическое тестирование не дает ответов «да» и «нет», сообщается лишь вероятность того или иного заболевания, и нельзя гарантировать точность оценки: она зависит слишком от многих факторов - и внешних, и генетических. Тут возможно неправильное понимание, но, по мнению Дайсон, без него к правильному не придешь. На прямой вопрос, могут ли тесты принести вред конкретному человеку, она неохотно отвечает: могут. Вдруг человек узнает, что предрасположен к страшной болезни, и решит покончить жизнь самоубийством. Возможна и обратная ситуация: тест даст обманчиво хорошие результаты.

Но вероятнее всего, что человек просто не воспримет свой тест всерьез: «Я результаты получил, но ничего пока не сделал, даже не прочитал их толком, - рассказывает президент крупного российского ИТ-холдинга, ставший клиентом 23andMe. - Времени нет, а там сложный медицинский английский, ничего не понять». По мнению профессора Баранова, генетический тест нет смысла делать без назначения врача. За тестами в его лабораторию обращаются около 50 человек в месяц, большинство - по совету медиков. «Врачей, которые к нам посылают, пока немного, десятки. Но их становится всё больше», - рассказывает сотрудник лаборатории Олег Глотов. «В США то же самое, - говорит Дайсон. - Там история с визитом вашего коллеги к кардиологу вполне могла бы повториться. Правда, нельзя не признать, что совет бросить курить от этого не становится менее ценным».

Александр Бердичевский, «Русский Newsweek»
  Ответить с цитированием
Старый 25.12.2008, 12:54   #4
Galina
Гость
 

Сообщений: n/a
По умолчанию

Гены, которые мы меняем


В тот момент, когда вы держите в руках этот номер журнала «В мире науки», каждый из 20 тыс. ваших генов, упакованный где-то в одной из 46 хромосом любой соматической клетки вашего организма, осциллируя, пребывает в совершенно разных состояниях, в зависимости от того, как вы читаете эту статью. Пьете ли чай, кофе либо гранатовый сок, сидя дома или в офисе, или мчитесь в вагоне переполненного метро, пытаясь изо всех сил удержать равновесие и читать одновременно, напрягая почти все ваши 656 мышц. И уж точно ваш генетический статус стал сейчас совершенно иным по сравнению с тем, что был, скажем, сегодня ночью, когда вы спали, вчера – когда провели полдня за рулем автомобиля, или три дня назад, после веселых выходных, не говоря уже о том, что произошло месяц, год, пять лет назад.

Perpetuum mobile – все меняется и пребывает в вечном движении! Как ни странно это звучит, но наши гены тоже постоянно меняются. Нет, не сама информация, кодирующая белки, записанная в виде нуклеотидной последовательности ДНК (впрочем, и такое случается во время точечных мутаций, хромосомных аберраций, делеций и вставок, становясь основой генной эволюции, а также многих генных болезней), а состояние генов – они то активируются, то ингибируются, причем до полного выключения. Экспрессия одних из них в клетке может усиливаться плавно, скачкообразно или по какой-то иной сложной схеме, других в тот же момент – сходить на нет или держаться на определенном базальном уровне. И все это может происходить в пределах мгновений, или от нескольких минут до часов, иногда дней. Каждый наш ген имеет свой, только ему присущий status quo, который зависит от тысячи разных факторов, как внутренних, так и внешних. И нужно совсем немного, чтобы изменить его, часто так незначительно мало, что поражаешься, насколько гены чувствительны к нашим действиям, к тому, что мы ели или пили, каким воздухом дышали, как спали, отдыхали или насколько активно провели день, даже к тому, о чем думали и мечтали, над чем умственно трудились или что эмоционально переживали. Все влияет в той или иной степени, рано или поздно, прямо или опосредованно. Ген больше не рассматривается как закрытый «черный ящик» – это довольно открытая система, тонко чувствующая нас самих и окружающую среду. Конечно, каждая клетка как маленькая фабрика производит свой, только ей присущий набор белков и протеинов; нейрон нельзя заставить вдруг экспрессировать пищеварительные ферменты поджелудочной железы, хотя все эти гены у него есть, только они заблокированы, так же как клетки поджелудочной нельзя заставить синтезировать белки миелиновой оболочки аксонов или специфические синаптические макромолекулы нейронов. Все предопределено в процессе эмбрионального развития. Но управлять сложным оркестром из нескольких тысяч синтезируемых белков, которые каждая клетка экспрессирует ежеминутно, может невидимый дирижер – мы с вами, наш образ жизни плюс факторы окружающей среды.

Ученые уже давно подметили, что однояйцевые близнецы, рожденные с абсолютно одинаковым набором генов, отличаются друг от друга по многим параметрам, например предрасположенности к болезням, особенно таким как шизофрения, депрессия или биполярное аффективное расстройство, часто имеют разные характеры и привычки, даже антропоморфические показатели тела могут быть различными. И чем старше близнецы, чем больше расходятся условия и образ их жизни, тем ярче становится выражена эта неодинаковость. Получается, что окружающая среда, личный опыт, поведение, привычки, питание и т.д. во многом определяют нас самих, нашу глобальную молекулярно-генетическую картину организма – какие гены экспрессируются, где и как, а какие гены «спят». Так, например, если один из близнецов заболел раком, то шансы другого заболеть составляют всего 20%, что показывает, насколько минимально влияние генов per se, и высоко – среды, индивидуального опыта. Или другой пример: из эпидемиологических исследований последних 50 лет известно, что частота возникновения злокачественной опухоли легких, прямой кишки, простаты и груди гораздо выше в западных странах, чем в восточных; и наоборот, рак мозга, шеи и матки обычен в Индии, а рак желудка – в Японии. Причем миграция людей полностью меняет эту картину: мигранты начинают болеть болезнями страны, куда они приехали. Опять-таки налицо мощный фактор среды. Сегодня специалисты считают, что влияние генов, которые мы наследуем, на развитие хронических болезней составляет всего 15%, остальные 85% – «заслуга» нашего образа жизни. В англоязычной научной литературе недавно даже появился такой термин, как lifestyle diseases – болезни образа жизни, к которым сейчас относят диабет, ожирение, многие сердечно-сосудистые заболевания, астму, атеросклероз, инсульты, гипертонию, расстройства гормональной, пищеварительной и иммунной систем, болезнь Альцгеймера, депрессии и фобии, даже рак.

Сегодня ученые выделяют шесть главных факторов, непосредственно влияющих на картину экспрессии наших генов: еда, режим питания, физическая активность, уровень стресса, вредные привычки, окружающая среда (экология). Все эти факторы, помимо собственно генетики, отвечают за то, насколько мы здоровы. Как вода точит камень, так эти факторы постепенно, день за днем, «шлифуют», трансформируют наш генетический статус, что идет либо на пользу нашему организму, либо ему во вред.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

Ген больше не рассматривается как «закрытая» стационарная система хранения наследуемой информации: напротив, появляется все больше научных данных о пластичности генов, их адаптационных свойствах, способности чутко реагировать на изменения внутренней и внешней среды человека.
Влияние генов, которые мы наследуем, на развитие хронических болезней составляет всего 15%, остальные 85% – следствие нашего образа жизни.
Выделяют шесть главных факторов, влияющих как на картину экспрессии наших генов, так и на геном в целом: еда, режим питания, физическая активность, уровень стресса, вредные привычки, окружающая среда (экология). Причем многие из этих взаимодействий генома и среды – эпигенетические.
Нутригенетика – наука, зародившаяся в США в начале этого десятилетия, изучающая влияние на геном человека пищи, того, как разные нутриенты модифицируют экспрессию генов, и как это ведет к изменению здоровья человека.

Правильная пища для генов

Пожалуй, я не ошибусь, назвав еду самым коротким путем к нашим генам. Это действительно так. Наш мозг в мгновение ока начинает продуцировать множество медиаторов, гипоталамус – гормонов, а пищеварительная система – сотню-другую пептидаз, амилаз, липаз и т.д. не только во время собственно трапезы, а задолго до нее, когда мы в мыслях предвкушаем ее вид, запах и вкус.

Сегодня в развитых странах, особенно в США, получила широкое распространение новая область научных знаний – нутригенетика (nutrigenetics), или генетика питания, наука о том, как правильно питаться, чтобы нашим генам было хорошо.

Давайте же разберемся, какие из продуктов питания находятся сейчас в поле зрения ученых? Как они влияют на геном человека? Как воздействуют на болезни?

Зеленый чай. Пожалуй, о целебных свойствах напитка, приготовленного из растения Camellia sinensis, знают все. Чай, в особенности зеленый, укрепляет сосуды и останавливает кровотечения благодаря витамину Р, витамины группы В улучшают общее самочувствие, кофеин помогает нам просыпаться по утрам, теофиллин – согреться в холод, а в жару – повысить тонус, теобромин стимулирует работу почек. Но только в последние годы специалисты начали приближаться к разгадке других свойств чая, способствующих продлению жизни, общему оздоровлению и омоложению организма.

В одном полномасштабном исследовании, проведенном в 1999 г. на более чем 8 тыс. человек группой ученых из Центра исследования рака префектуры Сайтама, Япония, было показано, что ежедневное употребление зеленого чая в количестве 10 маленьких японских чашек (~50 мл), значительно снижало риск онкологических заболеваний в течение жизни у здоровых людей, а употребление более пяти чашек больными раком молочной железы уменьшало частоту рецидивов болезни и увеличивало промежутки времени между ними. В другом аналогичном исследовании, опубликованном в 2007 г. в журнале Carcinogenesis, ученые из Австралийского национального университета смогли показать на более чем тысяче пациенток с раком молочной железы, что если употреблять зеленый чай с частотой примерно 600–700 чашек в год (т.е. около двух в день), то риск развития заболевания уменьшается на 50%.

Как же воздействует зеленый чай на раковые клетки? Первая научная работа, показавшая, что экстракт из обычного зеленого чая индуцирует гибель раковых клеток и блокирует их деление, была опубликована в 1997 г. группой американских исследователей во главе с Хасаном Мухтаром (Hasan Mukhtar). Как выяснилось, противораковым действием чай обязан особым полифенолам – катехининам, одним из самых мощных природных антиоксидантов. Epigallocatechin Gallate (EGCG) – главный катехинин зеленого чая – составляет от 50% до 80% от всех полифенолов чая; кружка зеленого чая вмещает примерно 200–300 мг EGCG. Как показали многие исследования, EGCG влияет почти на весь спектр онкологических заболеваний: от рака легких и молочной железы до опухолей прямой кишки, печени, желудка, простаты и кожи.

Так, в клинических экспериментах на пациентах с различными видами рака было показано, что либо капсулы, содержащие 200 мг EGCG, либо сам зеленый чай способствовали рецессии болезни, уменьшали возникновение новых раковых очагов и метастазов.

Как же работает EGCG? Согласно последним данным, он может проникать во все клетки организма, в том числе раковые, где связывается не только с различными белками и протеинами, но и напрямую с ДНК и РНК, что очень важно, так как показывает, что зеленый чай может непосредственно влиять на нашу ДНК, а значит на гены, их правильную экспрессию и трансляцию в белки. Пока не очень понятно, как все это происходит на молекулярно-клеточном уровне, но ясно одно: EGCG неким образом влияет на экспрессию определенных белков, в одних случаях усиливая ее, в других – уменьшая. Так американские ученые Кэтрин Каванаг (Kathryn Kavanagh) и Гейл Зоненшайн (Gail Sonenshein) из Бостонского университета показали, что EGCG угнетает развитие рака молочных желез у крыс, а также негативно воздействует на рост раковых образований в культуре через усиление экспрессии особого белка, p27 – мощного естественного ингибитора клеточного деления. В другой работе, осуществленной недавно в Технологическом институте им. Бирлы, Индия, использовались мыши с инкорпорированными раковыми клетками молочной железы человека – EGCG не только блокировал пролиферацию раковых клеток за счет ингибирования клеточного цикла, сильно уменьшая экспрессию генов белков клеточного деления, так называемых циклинов Cyclin D, Cyclin E, CDK-4, и CDK-1, но также вызывал их апоптоз – полную гибель.

Чеснок. Вот уже как минимум 6 тыс. лет чеснок используется как средство с тринадцатью «против» в его инструкции по применению: противовоспалительное, противобактериальное, противогрибковое, противопротозойное, противоглистное, противовирусное, противоболевое и т.д. Но то, как чеснок работает на молекулярно-генетическом уровне, как влияет на наши гены, понемногу становится понятно только за несколько последних лет кропотливых исследований.

Какие же компоненты чеснока сегодня в фокусе внимания ученых и фармакологических компаний? Пожалуй, чаще всего в статьях фигурируют органические сульфиды – diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl trisulfide (DATS), которые сейчас широко применяются в клинических и лабораторных испытаниях по всему миру. В аптеках доступны различные водные, спиртовые или сухие экстракты чеснока в виде капсул, настоек и масел. Как работают все эти DAS, DADS и DATS? Год назад в Медицинском университете Южной Каролины, США, было показано, что в чашке Петри с раковыми клетками человека чесночный экстракт индуцирует быстрый апоптоз метастазирующих клеток посредством активации экспрессии, так называемых стрессорных киназ p38 MAPK, JUNK1 и цистеиновых протеаз. Другой недавно открытый сульфид чеснока – thiacremonone – тоже зарекомендовал себя как надежный «киллер» раковых клеток. Он был успешно протестирован на метастазирующих клетках прямой кишки человека в Чунгбукском национальном университете, Южная Корея; его действие сводилось к тому, что он блокировал такие труднодоступные гены, как Bcl-2, cIAP/2, XIAP, iNOS, COX-2, нацеленные на выживание и рост раковых клеток, одновременно активируя проапоптические гены (Bax, caspse-3, PARP), призванные разрушать опухоль, элиминируя раковые клетки.

В другом исследовании, напечатанном в мае этого года в журнале Gerontology, ученые из Анкарского медицинского университета, Турция, задались вопросом, не может ли чеснок продлевать жизнь? Ведь известно, что народы, употребляющие в пищу много чеснока и других острых специй, отличаются большей средней продолжительностью жизни. Т.к. одна из главных научных гипотез старения сегодня – увеличение с возрастом оксидативного стресса в клетках, побочным продуктом которого являются свободные радикалы, разрушающие ДНК, белки и липиды, то исследователи решили рассмотреть именно те гены, которые контролируют этот процесс. Для этого была протестирована кровь у 13 пожилых (около 70 лет) людей до и после одного месяца употребления чеснока в количестве 0,1 г на кг массы тела в день, что составляет примерно 2–3 зубчика ежедневно. Как выяснилось, ученые были абсолютно правы – чеснок очень мощно активировал гены, кодирующие энзимы антиоксидантной системы человека (GSH-Px и SOD), подавляя гены оксидативных, производящие свободные радикалы и суперперекиси ферментов, таких как, например, MDA.

Гранатовый и апельсиновый соки. Сок плодов гранатового дерева Punica granatum имеет очень сильные антиоксидативные и антивоспалительные свойства. Недавно группой ученых во главе с Хасаном Мухтаром (Hasan Mukhtar) из Висконсинского университета, США, было показано, что экстракт из плодов граната имеет также поразительные антираковые свойства – сок был протестирован на крайне агрессивных раковых клетках простаты человека, а также на мышах in vivo (им добавляли 0,2-процентный экстракт в воду, что примерно соответствует по концентрации чистому гранатовому соку для человека). Мыши, которые сидели на гранатовой диете, показали значительное уменьшение раковых опухолей простаты: ингибировалась экспрессия циклинов D1, D2, E, которые регулируют деление клеток, и циклин-зависимых киназ CDK-2, CDK-4, CDK-6, а также усиливалась экспрессия «губительных» для раковых клеток генов и тормозилась активация генов «выживания». Чему же обязан гранатовый сок таким действием? Как выяснилось, он содержит особый танин – эллагитанин, очень сильный антиоксидант, способный убивать раковые клетки и останавливать их распространение. Этот антиоксидант находится в гранатовом соке в более активной форме, чем в зеленом чае или в красном вине. В другом исследовании, проведенном в Калифорнийском университете в Лос-Анджелесе в 2006 г. на 80 мужчинах с диагностированным раком простаты, было показано, что употребление всего одного стакана этого сока ежедневно замедляло метастазирование рака в четыре раза.

Апельсиновый сок, оказывается, тоже обладает геноохраняющими свойствами. Так, недавно ученые из Университета Буффало, США, провели эксперимент на 32 здоровых людях в возрасте 20–40 лет с нормальным весом, давая им выпить четыре разных напитка: воду с 300 калориями глюкозы, фруктозы, апельсиновый сок и просто воду, подслащенную сахарином – искусственным сахаром без калорий. Как показал анализ крови, взятой у всех участников всего спустя два часа после употребления напитков, количество свободных радикалов и клеточных маркеров воспаления, которые потенциально могут повреждать как белки, ДНК, так и целые клетки, было увеличено только в группе, которая пила чистый глюкозный напиток, несмотря на то что в апельсиновом соке также содержится глюкоза. Соответственно возникает вопрос: какие ингредиенты сока подавляли образование свободных радикалов и воспалительные процессы? Как оказалось, витамин С, которого так много в апельсиновом соке и который так славится своим антиоксидантными и противовоспалительными свойствами, не влиял на эти процессы, а главными «действующими лицами» стали два флавоноида – гесперетин и нарингенин: именно они блокировали воспаление и переокисление в клетках крови, вызванные употреблением напитков с глюкозой, до 70%.

Если посмотреть на весь спектр продуктов, которые человек употребляет сегодня в пищу, то можно с полной уверенностью сказать, что каждый из них обладает той или иной генрегулирующей активностью. Просто во многих случаях такую активность очень сложно выявить: она либо «маскируется» другими процессами, либо требует от ученых слишком сложных экспериментальных схем, чтобы ее как-то выявить. В данный момент в университетских лабораториях интенсивно разрабатывается примерно сотня пищевых продуктов, которые имеют наиболее сильно выраженные «генные» свойства – ученые пытаются разобраться, какие из ингредиентов продуктов умеют наилучшим образом «общаться» с нашими генами, чтобы на их основе создать новые лекарства или пищевые добавки. Вот лишь некоторые из них (активные ингредиенты указаны в скобках): виноград, красное вино (резвератрол), кориандр (линалол, монотерпены), соя (генистеин), базилик (урзоловая кислота), чернослив (олеаноловая, урзоловая кислоты, тритерпеноиды), олеандр (олеандрин), красный перец чили (капсаицин), цитрусовые (кверцетин), имбирь (гингерол), томаты (ликопен), морковь (бета-каротины), алоэ (эмодин), цветная капуста (сульфорафан), прополис (фенетиловый эфир кофеиновой кислоты, ФЭКК), артишок (силимарин).

Что нужно генам каменного века?

То, что регулярная физическая активность, в особенности профессиональный спорт, кардинально меняют не только мышечную массу, но и все другие системы организма человека, напрямую или опосредованно связанные с физической нагрузкой, – костную, сердечно-сосудистую, даже пищеварительную, – известно довольно давно. А вот то, как это происходит на уровне генома, как глобально влияет на другие системы организма, включая мозг, иммунную и репродуктивную системы, на состояния острой и хронической болезни, стресса и т.д., постепенно становится понятно только в последние годы, после полной расшифровки генома человека и изобретения новых молекулярно-генетических методов скрининга активности большого количества генов и белков одновременно – ДНК, РНК и протеиновых чипов.

Из потока исследовательских работ, наводнивших за последние пять лет тысячи научных журналов, постепенно становится понятно, что любой биологический организм, каким бы простым или сложным он ни был, очень тонко реагирует не только на изменения внутренних, но и внешних стимулов, адаптируясь к новым условиям; и эта реакция организма включает как адаптацию уже синтезированных белков и биологически активных веществ, таких как гормоны, синаптические медиаторы и т.д., так и изменение генома, ДНК и РНК, экспрессии так называемых белков и протеинов «домашнего хозяйства», даже синтез новых белков, которые до этого либо не синтезировались вообще, либо присутствовали в рудиментарных количествах.

Так, по данным эпидемиологических скрининг-исследований, гиподинамия, которой сегодня страдает каждый второй офисный работник, увеличивает множество рисков, связанных со здоровьем: болезни коронарной артерии на 45%, гипертензии – на 30%, рака толстого кишечника – на 41%, рака груди – на 31%, диабета II типа – на 50%, остеопороза – на 59%, способствует накоплению холестерола, ожирению, депрессии и повышенной смертности.

Что же происходит с современными «обломовыми в галстуках»? Из-за недостатка активности человек теряет массу тканей, нарушается нормальное функционирование клеток. Во время продолжительной гиподинамии у человека происходит масса адаптаций: на 25% уменьшаются ударный объем сердца и потребление кислорода, кости теряют в массе в 10 раз быстрее, чем обычно, скелетные мышцы становятся слабее, уменьшается концентрация митохондрий, чувствительность к инсулину падает в течение трех дней сидения на диване. Даже появилась теория о «генах каменного века», которая объясняет, почему наш организм начинает страдать от гиподинамии. Якобы на заре человеческой эволюции, в каменном веке, наши предки в течение двух с половиной миллионов лет выживали за счет постоянной физической активности, постоянного движения, поиска новой пищи, охоты, кочевания и т.д. За это время в нашем организме благодаря отбору появилась огромная когорта генов, которые «привыкли» к такому постоянному стимулу, и без нее начинают терять активность, ритм, нормальную экспрессию не только собственно протеины мышц, но сотни других белков, вовлеченных в энергетический и метаболический баланс всего организма. Как раз сегодня, как считают ученые, это и происходит с современным человеком – в нашем мире комфорта и «диванной болезни» роль умеренной, но постоянной физической нагрузки сведена до минимума, что сразу же отражается на дисбалансе генов каменного века, который приводит организм к таким метаболическим проблемам, как диабет, лишний вес, болезни сердца и крови, расстройства пищеварения, даже памяти и эмоций.

Ученые давно предполагали, что определенные гены весьма чувствительны к физической нагрузке, но первая работа, доказавшая это, появилась в 1967 г. и принадлежала Джону Холлоси (John Holloszy), который показал, что крысы, упражнявшиеся на беговой дорожке в течение 12 недель по два часа ежедневно, имели на 86% больше важного митохондриального протеина цитохрома-С, переносчика электронов в универсальной цепи утилизации и накопления энергии в клетках, чем крысы, лишенные физической активности.

Сколько генов активируется в организме человека под влиянием физической нагрузки? Ответ на этот вопрос был получен в 2005 г. в исследовании ученых из Института Каролинска в Стокгольме, Швеция, под руководством Карла Зюндберга (Carl Sundberg). Как оказалось, у здоровых мужчин регулярные занятия в течение шести недель на самом обычном велотренажере активируют такое количество разных генов, которое не активируется больше ничем – около 470. В основном стимулировались гены внеклеточного матрикса мышечных клеток и белки, связывающие кальций, но также важные гены, вовлеченные в развитие диабета и сердечно-сосудистых заболеваний, причем чем лучше результат был достигнут на тренировках, тем выше была экспрессия генов.

Сегодня более 15 млн американцев страдают диабетом II типа; в России эта цифра чуть поменьше, около 5–7% всего населения, но темпы заболевания постоянно растут, количество больных может вырасти к 2025 г. до 300 млн во всем мире. Одним из главных факторов, приводящих к развитию диабета, ученые сегодня называют гиподинамию. Так, в одном исследовании ученых из Университета Отаго, Новая Зеландия, которое получило награду на международной конференции по питанию в 2001 г. в Вене, было обследовано 79 здоровых человек в возрасте 35–60 лет на предмет изменения чувствительности клеток тела к инсулину под влиянием физической нагрузки (а толерантность к инсулину – одна из главных причин развития диабета).

Давно известно, что изменение образа жизни имеет оздоровительное воздействие на людей, уже болеющих диабетом, но что то же самое происходит и у здоровых людей, показано впервые. Так, свойство тела использовать инсулин по назначению выросло на 23% после четырехмесячной физической тренировки (20 минут фитнеса пять раз в неделю) и специальной диеты. Другими словами, умеренная физическая нагрузка приводила к лучшей чувствительности клеток тела к инсулину, по-видимому, за счет каких-то геномных модификаций экспрессии белков рецептора инсулина.

Медитация и гены

Сегодня практика медитации – удел не одиноких просвещенных буддийских монахов, как это было лишь 50–70 лет назад, а миллионов обычных людей во всем мире. Заниматься медитацией – не просто чувствовать себя лучше, быть более энергичным и уравновешенным. Медитация заставляет наш мозг работать по-другому, картина мозговых волн меняется, активность мозга синхронизируется, за счет этого нормализуются многие физиологические процессы в организме – сон, пищеварение, функционирование сердечно-сосудистой и нервной систем, меняется даже состав крови. Из исследования, предпринятого в 2005 г. Американской кардиологической ассоциацией, стало известно, что медитация продлевает жизнь, снижая риск смерти от болезней в старости на 25%, от кардиоваскулярных болезней – до 30% и до 50% – от рака.

Что же делает с мозгом медитация? В исследовании, проведенном в 2005 г. в Массачусетсском госпитале в Бостоне, США, ученые проследили, что происходит в головах практикующих медитацию людей, используя магнитно-резонансную томографию (МРТ). Специалисты отобрали 15 практикующих медитацию людей с разным опытом (от года до 30 лет) и 15 подопытных, которые никогда не медитировали. После анализа большого массива информации активности и структуры мозга стало ясно, что медитация увеличивает толщину некоторых отделов коры головного мозга, вовлеченных в процессы внимания, рабочей памяти и сенсорной обработки информации – префронтальной коры и островка Рейля.
Сара Лазар (Sara Lasar), руководитель данного исследования, прокомментировала результаты эксперимента так: «Вы тренируете мозг во время медитации, поэтому он и растет. Ведь известно, что у музыкантов, лингвистов, атлетов соответствующие области мозга увеличены. Рост коры мозга происходит не за счет роста нейронов, а за счет разрастания кровеносных сосудов, глиальных клеток, астроцитов – всей системы, которая питает мозг».

Как же мало нужно, чтобы включить механизмы саморегуляции в мозге через гены! Как показали эксперименты с использованием МРТ, проведенные в Бостонском университете, США, в 2007 г., достаточно всего одного часа йоги – и мозг начинает производить на 30% больше такого важного ингибиторного медиатора, как GABA. Уменьшение GABA в мозге наблюдается при депрессии, хронических состояниях страха и беспокойствах, а также эпилепсии. Таким образом, занятия самой обычной йогой могли бы здесь заменить медикаментозную терапию.

Медитация не только снимает стресс, усталость и беспокойство, но и омолаживает мозг. Так в работе, сделанной в прошлом году в Университете Эмори, США, были исследованы 13 человек, практикующих дзен-медитацию, которую используют буддисты Японии, Китая, Кореи и Вьетнама. В работе было впервые показано, что медитация может обращать вспять процессы старения. Известно, что с возрастом кора головного мозга уменьшается в толщине и объеме, она как бы усыхает, теряет воду, ухудшается трофика, тускнеют внимание и память, замедляется речь. Так вот, медитация останавливает эти процессы – все практикующие дзен-медитацию в зрелом или пожилом возрасте не имели возрастных изменений коры, а также продемонстрировали нормальные показатели в тестах на внимание.

Если медитация может так сильно воздействовать на морфологию мозга, значит здесь не обойтись без модификаций в экспрессии генов. В работе исследователей из Всеиндийского института медицинских наук, Нью-Дели, Индия, опубликованной в феврале этого года, были приведены результаты тестов крови 42 людей, как минимум год практикующих дыхательную технику сударшан крия (Sudarshan Kriya), когда человек дышит в разных ритмах. Результаты генного скрининга показали, что те, кто практиковал медитацию, имели более высокий уровень экспрессии таких важных генов, как гены, регулирующие антиоксидатный стресс, иммунный ответ, и гены, регулирующие апоптоз и выживание клеток.

Приведу еще один пример воздействия нетрадиционных оздоровительных практик на регуляцию генома. В 2005 г. ученые из Техасского университета во главе с Цюань-Чжэнь Ли (Quan-Zhen Li) протестировали клетки крови – нейтрофилы, используя ДНК-чипы, у шести азиатов, практикующих как минимум год в течение 1–2 часов в день особую медитационную технику древнего китайского цигун. Результат был впечатляющий – у всех них были сильно активированы гены, усиливающие иммунную систему, снижающие клеточный метаболизм, а также ускоряющие заживление любых воспалительных процессов, ран. Было просканировано более 12 тыс. генов, из них 250 были изменены, 132 – подавлены, 118 – активированы. Самые мощные изменения претерпели гены из убиквитин-зависимой системы элиминации белков, которая участвует в этиологии многих болезней, таких как рак, диабет, повышенное артериальное давление, сепсис, аутоиммунные заболевания, воспаления, и заболевания, связанные со старением. Многие энзимы этой системы, включая сам убиквитин, у практикующих эту технику были подавлены. Также была снижена экспрессия 10 генов из 11 так называемых рибосомальных протеинов, участвующих в синтезе белка. Гены иммунного ответа, интерферон, а также гены, кодирующие антибактериальные и антивирусные пептиды, Defensin-3 и цитокины, были наоборот усилены. Интересно, что снижение потребления калорий – единственный метод на сегодняшний день, который удлиняет жизнь крыс, мышей и приматов, – тоже снижает метаболизм и ингибирует убиквитин-систему элиминации белков во всех клетках.

Голодание меняет все

Существует множество различных современных методик голодания – по Бреггу, Шелтону, Малахову, Войтовичу, сухое, полное, на соках, овощах и т.д., – хотя сам феномен голодания зародился на заре человечества. Наши предки настолько понимали его значение для телесного и духовного здоровья человека, что голодание уже давно используется не только в нетрадиционных медицинах всех народов, но и в обычном укладе жизни целых стран, а чтобы оздоровительный эффект для тела и души был еще больше и имел «национальный» масштаб, различные практики голодания были интегрированы в религии, традиции, культуру и искусство – Великий пост у христиан, Йом Кипур у иудеев, Рамадан у мусульман, йога у индусов, восемь пресептов (правил поведения) и Пратимокша у буддистов.

Сегодня существует только один научно доказанный метод удлинения продолжительности жизни как животных, так и человека – снижение потребления калорий, когда диета обеспечивает всеми необходимыми питательными веществами, витаминами и минералами для здоровой и полноценной жизни, но имеет уменьшенное количество энергии (калорий), заключенной в продуктах. Такое щадящее голодание, как оказалось, отодвигает или полностью блокирует различные патологические изменения, ассоциированные со старением, и увеличивает продолжительность жизни от 30% до 50% у многих животных – от рыб и пауков до грызунов.

Еще в 1934 г. ученые из Корнеллского университета Клайв Маккей (Clive McCay) и Мэри Кроуэлл (Mary Crowell), используя лабораторных крыс, а также Рой Уолфорд (Roy Walford) из Калифорнийского университета, участник проекта «Сферы-2» и пионер целого научного направления в геронтологи, в 1980-х гг., проводя эксперименты на мышах, показали, что щадящее голодание (урезание потребления количества калорий в день на 25–50%) не только удлиняет жизнь грызунам вдвое, но и делает их физически и социально более активными. Другой исследователь, Моррис Росс (Morris Ross), провел эксперимент на крысах, разбив их на три группы, в которых животные потребляли разные количества (10, 25, 40%) протеинов в день, и группу, которая питалась без ограничений. Данное исследование показало, что крысы, которые не отказывали себе ни в чем, взрослели быстрее, достигали половой зрелости в более раннем возрасте и имели больше потомства, но умирали раньше и болели раком и другими болезнями чаще, чем крысы «на диете». Рой Уолфорд так прокомментировал это в одном из интервью журналу Life Extension Magazine: «…похоже, что мы запрограммированы естественным отбором выбирать такой режим питания, чтобы как можно быстрее достигать половой зрелости и производить потомство как можно больше и раньше – это хорошо для выживания и эволюции вида, но это полная катастрофа для выживания индивидуума».

Какие же гены изменяются посредством щадящего голодания или урезания потребления калорий? Ученые из Висконсинского университета, США, используя ДНК-микрочипы и просканировав 6347 генов в коре головного мозга и мозжечке лабораторных мышей, обнаружили, что старые мыши имели завышенные параметры экспрессии более 120 генов воспалительного ответа и оксидативного стресса, что говорит о том, что в «старом» мозге постоянно идут микровоспалительные процессы, по-видимому, по причине повреждений, наносимых свободными радикалами, генерируемыми оксидативным стрессом. Так вот, у мышей, ежедневное потребление калорий у которых было уменьшено на 25%, все эти гены были нормализированы.

В другом эксперименте, проведенном в 2007 г. учеными из Пеннингтонского центра биомедицинских исследований, США, протестировали уже не мышей, а 36 здоровых, но обладающих лишним весом молодых людей, разбив их на три группы: контрольная группа получала 100% необходимого количества энергии в пище, две других были ограничены в калориях в течение шести месяцев – одна получала на 25% меньше «нормы», другая – на 12,5%, но комбинировала диету с физическими упражнениями. Как показал генетический анализ мышечной ткани, взятой у всех участников после эксперимента в виде небольших биопсий, обе группы «на диете» увеличили количество митохондрий и уменьшили количество поврежденной свободными радикалами ДНК в клетках. Ученые также обнаружили, что «диета» послужила мощным стимулом для активации экспрессии множества генов (PPARGC1A, TFAM, eNOS, PARL), кодирующих важные функциональные белки наших энергетических клеточных станций – митохондрий. Интересно, что такая диета также привела в активность особый ген – SIRT1, человеческий аналог гена Sir2, найденного у дрожжей, нематод и дрозофил, активация которого приводит к удлинению жизни за счет улучшения клеточного метаболизма. Похожее исследование было проведено группой ученых из Гарвардской медицинской школы и Национального института здоровья, США, и опубликовано в журнале Cell в 2007 г. Исследователи обнаружили еще два гена из этого же семейства митохондриальных сиртуин-генов (sirtuin) – SIRT3 и SIRT4, которые реагировали на уменьшение калорий активацией через цепочку реакций других важных генов NAMPT и NAD. Все это приводило к тому, что митохондрии становились сильнее и здоровее, производили больше энергии, за счет этого процессы старения клеток сильно замедлялись, специальная «суицидальная» программа самоуничтожения клеток тоже тормозилась. Интересно, что примерно то же самое – активация и оптимизация работы митохондрий – происходит на молекулярном уровне по-сле физических упражнений.

Согласно последним данным, полученным в ряде работ, достаточно соблюдать следующие требования – и можно снизить на 70–90% риск развития таких болезней, как рак толстой кишки и легких, инфаркт миокарда, инсульт, диабет II типа, ожирение и многие другие:

• физическая активность, эквивалентная 30 мин. и больше быстрой ходьбы;
• как минимум 100 микрограммов фолиевой кислоты в день;
• меньше чем три бокала слабого вина в день;
• никакого табака в течение жизни;
• меньше чем три обеда в неделю, меню которых включает красное мясо;
• сниженное потребление насыщенных, трансжиров и сахаров;
• достаточное потребление полиненасыщенных жиров, омега-3-жиров и диетических волокон из злаков, побольше зелени, овощей и фруктов.
• Вам всего лишь нужно выполнять этот набор очень простых требований – и ваши гены будут счастливы!

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА
• Nutritional Genomics: Impact on Health and Disease. By Regina Brigelius-Flohо, Hans-Georg Joost, Wiley-VCH, 2006.
• Nutritional Genomics: Discovering the Path to Personalized Nutrition. By Jim Kaput, Raymond L. Rodriguez. Wiley-Interscience, 2006.
• Nutrigenetics and Nutrigenomics. By Artemis P. Simopoulos, J. M. Ordovas. Karger Publishers, 2004.
• Nutrition and Fitness: Diet, Genes, Physical Activity and Health. By Artemis P. Simopoulos, Konstantinos N. Pavlou. Karger Publishers, 2001.
• Nutritional Genomics – A Consumer's Guide to How Your Genes and Ancestry Respond to Food: Tailoring What You Eat to Your DNA. By Anne Hart. iUniverse, 2003.
• Personalized Nutrition: Principles and Applications. By Frans Kok, Laura Bouw-man, Frank Desiere. CRC Press, 2007.
• Molecular Nutrition: Nutrition and the Evolution of Humankind. By Mark Lucock. Wiley-Liss, 2007.
• Phytochemicals: Nutrient-gene Interac-tions. By Mark S. Meskin, Wayne R. Bid-lack, R. Keith Randolph. CRC Press, 2006.
• Genetics Primer for Exercise Science and Health. By Stephen M. Roth. Human Kinetics, 2007.
• Эпигенетика (статья в GEO).
• МакКонки Э. Геном человека / Пер. с англ. Серия: Мир биологии и медицины. М.: Техносфера, 2008.
• Человек и среда его обитания: Хрестоматия. М.: Мир, 2003.
• «Теневая» часть генома: за пределами ДНК // ВМН, 2004, № 3.
• Правильное питание: спросите у ДНК // ВМН, 2008, № 3.

ОБ АВТОРЕ
Олег Сеньков (Oleg Senkov) – нейрофизиолог, получил бакалаврскую и магистерскую научные степени в Санкт-Петербургском государственном университете, защитил докторскую диссертацию в Гамбургском университете (Германия), в данный момент – научный сотрудник Института нейрофизиологии и патофизиологии университетской клиники Эппендорф в Гамбурге. Сфера научных интересов – исследование мозга, в частности, основ работы памяти и обучения на молекулярно-генетическом, клеточном и системном уровнях. Хобби: журналистика, фотографирование и веб-дизайн. Домашняя страница: http://www.olegsenkov.com/


Олег Сеньков, «В мире науки» № 11-2008
  Ответить с цитированием
Старый 25.12.2008, 12:56   #5
Galina
Гость
 

Сообщений: n/a
По умолчанию

Слово о генетике поведения

Исследование поведения человека испокон веков считается территорией, на которой молекулярщикам, генетикам и прочим приверженцам «механистического» взгляда на живое делать совершенно нечего: настолько всё это сложно, одухотворённо и вообще далеко от банального взаимодействия молекул. Однако постепенно такое табу остаётся в прошлом, и множество исследований уже начинает выхватывать из тьмы неизведанного отдельные детали, связывающие генетику и поведение. Эта заметка, основанная на небольшом обзоре, опубликованном в журнале Science, удачно дополнит материал «Гены управляют поведением, а поведение — генами», появившийся на сайте «Элементы» и основывающийся на статьях и обзорах, опубликованных в том же номере Science.

Сложно поверить, что поведение человека и другие аспекты высшей нервной деятельности могут быть как-то связаны с генами. Частенько можно услышать в ответ на высказывание о, например, половом (а значит генетически предопределённом) различии математических способностей раздражённое заявление навроде «ну тогда предъявите мне математический ген!». Само собой, никакого «математического гена» не существует, однако это ещё не означает, что математические способности (равно как и более общие способности концентрировать внимание, воспринимать абстрактные логические построения и др.) никак не «закодированы» на уровне ДНК. Дело в том, что все сложные феномены, так или иначе связанные с высшей нервной деятельностью и не обусловленные напрямую каким-нибудь тяжёлым наследственным заболеванием, основываются на сложнейших эффектах взаимодействия множества генов, лишь создающих возможность формирования тех или иных нейронных структур и личностных характеристик, но уж никак не определяющих их на 100%. Обладай человек хоть тысячей копий «математического гена» (если б он существовал), без систематического развития способностей, само собой, ничего не получится, и мечтателям об этом стоит хорошенько помнить. Просто, наверное, у многих газетные заголовки типа «Открыт ген жестокосердия» или «Разводы предрешены генетически» могут создать такое впечатление, что и успехи, и провалы людей во всех сферах жизни уже можно объяснить на уровне генов (но знают ли читатели таких газет, что такое гены?), а, следовательно, и напрягаться-то особо не стоит.

А что, удобно было бы объяснить плохую социальную адаптацию наследственностью, а поведение всех подрезающего и мечущегося из полосы в полосу «частника» геном воинственности. Да, кстати, а знаменитые депрессии Хемингуэя вызваны проблемами с рецептором дофамина? А может быть, супружеские измены являются прямым следствием особенности строения гена вазопрессинового рецептора? Исследования указывают на определённую связь между этими феноменами, хотя не стоит, конечно, свои промахи и чужие успехи объяснять исключительно этим.

Десятилетия исследований с участием семей и родственников, близнецов и приёмных детей показали, что определённая (и иногда довольно существенная!) связь между генотипом и предрасположенностью к определённому типу поведения в модельных ситуациях присутствует, но что по сравнению с поиском сложнейших закономерностей, определяющих эту связь, выявление мутаций, вызывающих развитие, например, болезни Гентингтона [1], выглядит просто детской забавой. Сейчас уже совершенно очевидно, что способность к беглой речи и изучению языков, отзывчивость и готовность помочь ближним и другие душевные качества не могут определяться каким-то одним геном, но формируются под влиянием множества факторов (из которых главным пока что, наверное, всё-таки является воспитание). Кроме того, один и тот же ген, скорее всего, будет участвовать сразу во многих процессах — например, предрасположенности к депрессиям, перееданию и импульсивному поведению, делая задачу установления однозначных связей почти невыполнимой. Изучение этих факторов, несомненно, — самая сложная задача, когда-либо встававшая перед генетиками, бихевиористами и психологами.

Далее следует небольшой обзор генов, «засветившихся» в заголовках газет: что именно про них известно и как их изменчивость может влиять на личностные качества.

Любит — не любит...

Генетическое сканирование на крепость брачных уз? Что? Не слишком ли похоже на лозунг одного из магических салонов? Несмотря на солидный оттенок желтизны подобного заявления, одна канадская фирма действительно предлагает за 99 долларов проанализировать у обратившейся пары ген рецептора вазопрессина 1а (AVPR1a), получивший скандальную известность как ген жестокосердия или ген развода. Однако же, как такой тест может оказаться более информативным, чем давно зарекомендовавшее себя гадание по ромашке?

Пептидному гормону вазопрессину, кроме регуляции водно-солевого обмена, в последнее время начали приписывать функцию биохимического посредничества при формировании привязанности к половому партнёру или к потомству. Исследование на полёвках — а прерийные полёвки, в отличие от луговых и горных «товарок», строго моногамны и верны своим партнёрам — показало, что в последовательности промотора гена вазопрессинового рецептора у моногамных и полигамных мышей есть существенные различия. У прерийных полёвок этот участок на несколько оснований длиннее, что приводит к увеличению экспрессии рецептора [2]. Эндшпилем исследования, посвящённого связи рецептора вазопрессина и «правильного» поведения, стала демонстрация того факта, что увеличенная экспрессия рецептора в мозге самцов луговой полёвки делает их, подобно прерийным «коллегам», менее «разгульными» и более приверженными семейному очагу и заботе о потомстве. (Подробнее об этом можно почитать в статье «Гены управляют поведением, а поведение — генами» [3].)

Всего генами не объяснишь, однако в Швеции провели исследование с участием 500 однополых близнецов, каждый (или каждая) из которых состоял в гражданском или фактическом браке в течение, по меньшей мере, пяти лет [4]. Предметом исследования стала связь структуры промотора гена рецептора AVPR1a с результатами анкетирования, включавшего вопросы вроде «как часто вы целуете своего партнёра» или «как часто ваши интересы и интересы вашего партнёра пересекаются за пределами семейного круга». (Этот опросник должен был дать оценку «температуре» семейных отношений.) Выяснилось, что для мужчин, последовательность промотора гена AVPR1a которых была короче (а было обнаружено несколько вариантов), характерна менее сильная привязанность к жёнам, чем для остальных. Эти мужчины реже женятся, а в браке их чаще постигает кризис семейных отношений. Так что же, «ген развода» всё-таки найден? Пожалуй, не стоит торопиться: реальность может оказаться сложнее этой удобной для гуляк схемы.

В работе группы израильских учёных изучен ещё один эффект вариаций в промоторе вазопрессинового гена, влияющих на социальные отношения — однако на этот раз не на любовь и семейную «порядочность», а, скорее, на альтруизм [5]. Мерилом альтруизма стала «игра в диктатора» (“dictator game”), часто используемая в исследованиях по экономике и социологии, которая в данном случае заключалась в том, что группу добровольцев из 200 человек разделили поровну на подгруппы «А» и «Б», наделив их разными «полномочиями». Каждому «А-шке» выдали 14 долларов и предложили поделиться деньгами на своё усмотрение с «Бэ-шкой», который, по правилам игры, был ему не знаком. Около 18% ничего не отдали «Бэ-шкам», 6% отдали все деньги, а оставшиеся поделились частью денег. Так вот оказалось, что «эгоисты», выявленные в этой игре, обладают тем же вариантом промотора гена AVPR1a, что и люди, склонные к менее крепким семейным отношениям (о которых речь уже шла). Учёные рассуждают, что характерное для этих людей распределение вазопрессиновых рецепторов в мозгу приводит к тому, что сам акт дарения (как материальных благ, так и своей любви или дружбы) оказывается для них менее значимым по внутренней шкале ценностей (которая, оказывается, «регулируется» биохимически!). Кроме того, было выдвинуто предположение, что короткий вариант промотора может быть связан с аутизмом — болезнью, главной чертой которой является неспособность завязывать контакты с другими людьми.

Однако ни в семейной жизни, ни в дружбе нет таких однозначных связей, как в патофизиологических состояниях (хотя...), а, значит, и на «генетических гадалок» надеяться, пожалуй, не стоит.

I will survive

Некоторых людей называют слабовольными за то, что они не способны противиться окружающим их обстоятельствам, и их может расстроить даже незначительное происшествие, в то время как другие стойко преодолевают все невзгоды и неотвратимо движутся к намеченному. Однако и в такого рода стойкости, кажется, не обошлось без генетики: эмоциональные взлёты и падения связывают с нейромедиатором серотонином, о транспортёре которого (SERT) пойдёт речь далее.

В ставшей уже классической работе 1996 года Клауса-Петера Леща (Klaus-Peter Lesch) было выявлено, что длина регуляторных последовательностей, предшествующих гену SERT, также связана с поведением людей [6]. У тех из 505 добровольцев, которые были по опроснику классифицированы как подверженные неврозам (депрессиям, тревоге и проч.), была выявлена короткая регуляторная последовательность, присутствующая в одной или двух копиях, в то время как у более «спокойных» подопытных обнаружили длинный вариант промотора. «Короткая» форма промотора вызывает более активную секрецию серотонина в синапсы, что, как было показано и на животных, и на людях, вызывает тревогу и беспокойство. Не стоит, впрочем, обольщаться идеей абсолютно точно предсказать характер человека по результатам генотипирования: согласно статистической обработке, короткая форма промотора SERT ответственна лишь за 4% депрессий и негативных эмоций. Впрочем, психологи отмечают, что и 4% в случае личностных качеств — это уже очень много, поскольку до того учёным не удавалось обнаружить ни одного гена, вариации в котором давали хотя бы такой уровень причинной связи.

В другой работе, появившейся в 2003 году, анализировали связь между стрессорными событиями в жизни и связанными с ними переживаниями в группе из 847 человек, которых анкетировали на предмет наличия депрессий в возрасте между 20 и 26 годами. Среди испытуемых, которым не пришлось за этот период испытать «ударов судьбы» (таких как смерть близких людей, увольнение с работы, личные неудачи и пр.), существенной связи между геном SERT и вероятностью возникновения депрессии выявлено не было (а сама эта вероятность была низкой). Самое же интересное было в группе людей, переживших четыре и более стрессорных эпизода: 43% носителей «короткой» изоформы промотора SERT доложили о депрессивном периоде, связанном с неприятностями, в то время как среди обладателей «длинного» варианта число депрессий было почти в два раза ниже. Кроме того, было выявлено, что у людей с «коротким» промотором SERT в зрелом возрасте чаще возникает депрессия, если они в детстве сталкивались с жестоким обращением; у другой же части исследованной группы такой закономерности не наблюдалось.

Но и тут, конечно, преждевременно утверждать что-то конкретное. Многие учёные с цифрами в руках доказывают, что для таких слабых эффектов размер использованных выборок явно недостаточен, а влияние серотонина и его транспортёра на физиологию настолько широко — это и нарушения сна, и сердечно-сосудистая деятельность, и шизофрения, и аутизм, и состояние поиска острых ощущений, — что судить об их влиянии на поведение можно только в самых общих чертах.

Ген воинственности

В 2006 году было открыто, что за «знаменитое» воинственное поведение новозеландского племени маори может отвечать особая форма гена моноаминоксидазы-А, отвечающей за расщепление нейромедиаторов в мозгу. По данным новозеландского исследователя Рода Ли (Rod Lea), 60% азиатов (антропологический тип полинезийцев, включая и маори, сложился в результате смешения древних южных
монголоидов и негро-австралоидов) являются носителями особого, «воинственного» варианта гена МАО-А, в то время как у европеоидов этот показатель не превышает 40%. Однако сам Ли признаёт, что сваливать все социальные проблемы — такие как агрессивность, склонность к азартным играм и различные пагубные привычки — на один-единственный ген было бы чрезмерным упрощением.

В другом исследовании с помощью магнитно-резонансного сканирования мозга было продемонстрировано, что у носителей «воинственной» аллели МАО-А значительно сильнее возбуждается особый отдел мозга — миндалина (amygdala) — в ответ на предъявление эмоциональных раздражителей, таких как изображения страшных или отвратительных лиц. (Миндалина, или миндалевидная железа — отдел мозга, обрабатывающий социально-значимую информацию, связанную с такими эмоциями, как страх и недоверчивость.) Обнаруженная активность, очевидно, доказывает, что таким людям труднее контролировать свои эмоции, и что они с большей вероятностью ответят агрессией на какие-либо эмоциональные раздражители.

В случае гена MAO-А, также как и для серотонинового транспортёра, было показано, что обладатели «воинственной» аллели будут иметь «проблемы с поведением» с большей вероятностью, если в детстве они сталкивались с жестоким обращением (а если нет — то вероятность «антисоциальности» оказывается почти в три раза ниже) [7]. Каким образом события из сферы взаимоотношения людей — даже такие малоприятные, как жестокое обращение с детьми, — оказываются в состоянии повлиять на экспрессию генов — пока, кажется, остаётся загадкой.

Аналогично «ложке дёгтя» в случае «антисоциального» поведения действует тестостерон: при сравнении 45 мужчин-алкоголиков, да ещё и с криминальным прошлым, с контрольной группой «без отягчающих», выяснилось, что у «буянов» не только снижена экспрессия МАО-А (т. е. присутствует «воинственный» аллель), но ещё и повышено содержание тестостерона. И хотя «воинственный ген» вряд ли отвечает за весь спектр социальных проблем, некоторое влияние на поведение (особенно в «коктейле» с тестостероном) он определённо имеет.

Live fast, die young

Что объединяет Дженис Джоплин, Джими Хендрикса и Курта Кобейна кроме того, что все они являются членами мистически известного клуба 27? Мир рок-музыкантов — это, пожалуй, хорошее место для поиска людей с нарушенной (а иногда и напрочь съехавшей) системой положительных подкреплений, формирующей традиционную шкалу ценностей человека. В случае подобного нарушения человек перестаёт получать положительные эмоции от повседневных вещей, приятных большинству людей, и ударяется во все тяжкие в поиск нездоровых форм новых ощущений вроде пристрастия к алкоголю, табаку, наркотикам или азартным играм. Однако виновен ли в этом дофаминовый рецептор, реагирующий на нейромедиатор дофамин, недостаток которого и ведёт к нарушению системы положительных подкреплений?

Аллельная форма A1 дофаминового рецептора D2 «чувствует» дофамин не очень хорошо, что и приводит, возможно, к «притуплению» ощущений, сопровождающих повседневные действия. Некоторые учёные считают, что именно полиморфизм рецептора D2 является причиной пагубных привычек и отчётливо выраженного постоянного поиска острых ощущений, а также антисоциального поведения, включая проблемы во взаимоотношениях с другими людьми.

Исследование с участием 195 студентов одного из университетов штата Нью-Йорк показало, что носители аллели А1 раньше начинают половую жизнь, но в то же время менее способны к завязыванию длительных отношений. В другой работе показано, что мальчики — носители одной аллели А1 — имеют большую склонность к маргинальному и преступному поведению, нежели обладатели двух аллелей А2. Правда, гетерозиготные A1/A2 «подопытные» продемонстрировали ещё большую склонность подобного рода, несколько запутывая ситуацию. Один учёный даже выразился по поводу этого гена, что «тут пока больше дыма, чем огня».

Кстати, в последнем номере Science появилась даже работа, в которой проводят связи между вариантами гена DRD2 и приверженностью к определённой политической партии, утверждая, что люди с двумя «высокоэффективными» А2-аллелями оказываются более доверчивыми и легче вступают в какие-нибудь партии [8].

Понятно, что в генетике поведения практически ничего ещё не понятно. Однако понятно и другое — что психологам вскоре, кроме устаревших тестов Айзенка и прочих опросников, придётся вооружаться современными инструментами по анализу генетических особенностей участников их исследований.

Подготовлено по материалам новостей Science [9] с сокращениями.

Литература

биомолекула: «Идентифицированы белки, „слипающиеся“ при болезни Гентингтона»;
Donaldson Z.R., Young L.J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900–904;
Элементы: «Гены управляют поведением, а поведение — генами»;
Walum H. et al. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc. Natl. Acad. Sci. U.S.A. 105, 14153–14156;
Knafo A. et al. (2008). Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes Brain Behav. 7, 266–275;
Lesch K.P. et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531;
Caspi A. et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854;
Fowler J.H., Schreiber D. (2008). Biology, politics, and the emerging science of human nature. Science 322, 912–914;
Holden C. (2008). Parsing the Genetics of Behavior. Science 322, 892–295.


Антон Чугунов, «Биомолекула»
  Ответить с цитированием
Старый 25.12.2008, 13:00   #6
Galina
Гость
 

Сообщений: n/a
По умолчанию

Гены управляют поведением, а поведение — генами



Журнал Science опубликовал серию обзорных и теоретических статей, посвященных взаимосвязи генов и поведения. Последние данные генетики и нейробиологии указывают на сложность и неоднозначность этой взаимосвязи. Гены влияют даже на такие сложные аспекты человеческого поведения, как семейные и общественные взаимоотношения и политическая деятельность. Однако существует и обратное влияние поведения на работу генов и их эволюцию.

Гены влияют на наше поведение, но их власть не безгранична

Хорошо известно, что поведение во многом зависит от генов, хотя о строгом детерминизме в большинстве случаев говорить не приходится. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные мутации могут менять поведение вполне определенным образом. Однако необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать.

Этот круг тем составляет предмет генетики поведения. В обзорных статьях, опубликованных в последнем номере журнала Science, приведен ряд ярких примеров того, как изменения отдельных генов могут радикально менять поведение. Например, еще в 1991 году было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans.

Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье. Как получилось, что один и тот же ген сходным образом влияет на поведение у столь разных насекомых, имеющих совершенно разный уровень интеллектуального развития? Четкого ответа на этот вопрос пока нет. Ниже мы столкнемся и с другими примерами удивительного эволюционного консерватизма (устойчивости, неизменности) молекулярных механизмов регуляции поведения.

Эффект Болдуина: обучение направляет эволюцию

Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.

Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.

Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).

Эффект Болдуина поверхностно схож с ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.

Социальное поведение влияет на работу генов

Поведение влияет также и на работу генов в течение жизни организма. Эта тема подробно развивается в статье Джина Робинсона (Gene E. Robinson) из Иллинойского университета (University of Illinois at Urbana-Champaign) с соавторами. В работе рассматривается взаимосвязь между генами и социальным поведением животных, причем особое внимание уделено тому, как социальное поведение (или социально-значимая информация) влияет на работу генома. Это явление начали в деталях исследовать сравнительно недавно, но ряд интересных находок уже сделан.

Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.

Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.

Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. «Элементы» уже писали о сложной общественной жизни и недюжинных умственных способностях аквариумной рыбки Astatotilapia burtoni (см.: Рыбы обладают способностью к дедукции, «Элементы», 30.01.2007). В присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.

Белок, кодируемый геном egr1, является транскрипционным фактором, то есть регулятором активности других генов. Характерной особенностью этого гена является то, что для его включения достаточно очень кратковременного внешнего воздействия (например, одного звукового сигнала), и включение происходит очень быстро — счет времени идет на минуты. Другая его особенность в том, что он может оказывать немедленное и весьма сильное влияние на работу многих других генов.

egr1 — далеко не единственный ген, чья работа в мозге определяется социальными стимулами. Уже сейчас понятно, что нюансы общественной жизни влияют на работу сотен генов и могут приводить к активизации сложных и многоуровневых «генных сетей».

Это явление изучают, в частности, на пчелах. Возраст, в котором рабочая пчела перестает ухаживать за молодью и начинает летать за нектаром и пыльцой, отчасти предопределен генетически, отчасти зависит от ситуации в коллективе (см.: Выявлен ген, регулирующий разделение труда у пчел, «Элементы», 13.03.2007). Если семье не хватает «добытчиков», молодые пчелы определяют это по снижению концентрации феромонов, выделяемых старшими пчелами, и могут перейти к сбору пропитания в более молодом возрасте. Выяснилось, что эти запаховые сигналы меняют экспрессию многих сотен генов в мозге пчелы, и особенно сильно влияют на гены, кодирующие транскрипционные факторы.

Очень быстрые изменения экспрессии множества генов в ответ на социальные стимулы выявлены в мозге у птиц и рыб. Например, у самок рыб при контактах с привлекательными самцами в мозге активизируются одни гены, а при контактах с самками — другие.

Взаимоотношения с сородичами могут приводить и к долговременным устойчивым изменениям экспрессии генов в мозге, причем эти изменения могут даже передаваться из поколения в поколение, то есть наследоваться почти совсем «по Ламарку». Данное явление основано на эпигенетических модификациях ДНК, например на метилировании промоторов, что приводит к долговременному изменению экспрессии генов. Было замечено, что если крыса-мать очень заботлива по отношению к своим детям, часто их вылизывает и всячески оберегает, то и ее дочери, скорее всего, будут такими же заботливыми матерями. Думали, что этот признак предопределен генетически и наследуется обычным образом, то есть «записан» в нуклеотидных последовательностях ДНК. Можно было еще предположить культурное наследование — передачу поведенческого признака от родителей к потомкам путем обучения. Однако обе эти версии оказались неверными. В данном случае работает эпигенетический механизм: частые контакты с матерью приводят к метилированию промоторов определенных генов в мозге крысят, в частности генов, кодирующих рецепторы, от которых зависит реакция нейронов на некоторые гормоны (половой гормон эстроген и гормоны стресса — глюкокортикоиды). Подобные примеры пока единичны, но есть все основания полагать, что это только верхушка айсберга.


Гены, мозг и социальное поведение связаны сложными отношениями. Эти отношения действуют на трех временных масштабах: (i) на уровне физиологии — влияя на активность мозга (сплошные линии), (ii) на уровне развития организма — через экспрессию генов в мозге и эпигенетические модификации (линия из точек), (iii) на эволюционном уровне — через естественный отбор (пунктирная линия). Направление влияния: розовые стрелки — от социальных отношений к изменению функций мозга и поведения, стрелки цвета морской волны — от генов к социальному поведению. Изображенные животные (сверху по часовой стрелке): зебровая амадина (T. guttata), цихлида (A. burtoni), медоносная пчела (A. mellifera), дрозофила (D. melanogaster), прерийная полёвка (M. ochrogaster), крыса (R. norvegicus), огненный муравей (S. invicta). Курсивом на фотографиях даны названия генов, связанных с тем или иным видом социального взаимодействия. Изображение из обсуждаемой статьи Robinson et al.

Взаимоотношения между генами и социальным поведением могут быть крайне сложными и причудливыми. У красных огненных муравьев Solenopsis invicta есть ген, от которого зависит число цариц в колонии. Гомозиготные рабочие с генотипом BB не терпят, когда в колонии более одной царицы, и поэтому колонии у них маленькие. Гетерозиготные муравьи Bb охотно ухаживают сразу за несколькими самками, и колонии у них получаются большие. У рабочих с разными генотипами сильно различаются уровни экспрессии многих генов в мозге. Оказалось, что если рабочие BB живут в муравейнике, где преобладают рабочие Bb, они идут на поводу у большинства и смиряют свои инстинкты, соглашаясь заботиться о нескольких царицах. При этом рисунок генной экспрессии в мозге у них становится почти таким же, как у рабочих Bb. Но если провести обратный эксперимент, то есть переселить рабочих Bb в муравейник, где преобладает генотип BB, то гости не меняют своих убеждений и не перенимают у хозяев нетерпимость к «лишним» царицам.

Таким образом, у самых разных животных — от насекомых до млекопитающих — существуют весьма сложные и иногда во многом похожие друг на друга системы взаимодействий между генами, их экспрессией, эпигенетическими модификациями, работой нервной системы, поведением и общественными отношениями. Такая же картина наблюдается и у человека.

Нейрохимия личных отношений



Взаимоотношения между людьми еще недавно казались биологам слишком сложными, чтобы всерьез исследовать их на клеточном и молекулярном уровне. Тем более что философы, теологи и гуманитарии всегда были рады поддержать подобные опасения. Да и тысячелетние культурные традиции, испокон веков населявшие эту область всевозможными абсолютами, «высшими смыслами» и прочими призраками, так просто не отбросишь.

Однако успехи, достигнутые в последние десятилетия генетиками, биохимиками и нейрофизиологами, показали, что изучение молекулярных основ нашей социальной жизни — дело вовсе не безнадежное. О первых шагах в этом направлении рассказывает статья нейробиологов из Университета Эмори (Emory University) Зои Дональдсон и Ларри Янга (Zoe R. Donaldson, Larry J. Young).

Одно из самых интересных открытий состоит в том, что некоторые молекулярные механизмы регуляции социального поведения оказались на редкость консервативными — они существуют, почти не меняясь, сотни миллионов лет и работают с одинаковой эффективностью как у людей, так и у других животных. Типичный пример — система регуляции социального поведения и общественных отношений с участием нейропептидов окситоцина и вазопрессина.

Эти нейропептиды могут работать и как нейромедиаторы (то есть передавать сигнал от одного нейрона другому в индивидуальном порядке), и как нейрогормоны (то есть возбуждать сразу множество нейронов, в том числе расположенных далеко от точки выброса нейропептида).

Окситоцин и вазопрессин — короткие пептиды, состоящие из девяти аминокислот, причем отличаются они друг от друга всего двумя аминокислотами. Эти или очень похожие на них (гомологичные, родственные) нейропептиды имеются чуть ли не у всех многоклеточных животных (от гидры до человека включительно), а появились они не менее 700 млн лет назад. У этих крошечных белков есть свои гены, причем у беспозвоночных имеется только один такой ген, и, соответственно, пептид, а у позвоночных — два (результат генной дупликации).


У самых разных представителей животного царства взаимоотношения с сородичами регулируются одними и теми же веществами — нейропептидами окситоцином, вазопрессином и их гомологами. Рис. из обсуждаемой статьи Donaldson & Young
У млекопитающих окситоцин и вазопрессин вырабатываются нейронами гипоталамуса. У беспозвоночных, не имеющих гипоталамуса, соответствующие пептиды вырабатываются в аналогичных (или гомологичных) нейросекреторных отделах нервной системы. Когда крысам пересадили рыбий ген изотоцина (так называется гомолог окситоцина у рыб), пересаженный ген стал работать у крыс не где-нибудь, а в гипоталамусе. Это значит, что не только сами нейропептиды, но и системы регуляции их экспрессии (включая регуляторные области генов нейропептидов) очень консервативны, то есть сходны по своим функциям и свойствам у весьма далеких друг от друга животных.

У всех изученных животных эти пептиды регулируют общественное и половое поведение, однако конкретные механизмы их действия могут сильно различаться у разных видов.

Например, у улиток гомолог вазопрессина и окситоцина (конопрессин) регулирует откладку яиц и эякуляцию. У позвоночных исходный ген удвоился, и пути двух получившихся нейропептидов разошлись: окситоцин влияет больше на самок, а вазопрессин — на самцов, хотя это и не строгое правило (см.: Самцы после спаривания становятся спокойнее и смелее, «Элементы», 16.10.2007). Окситоцин регулирует половое поведение самок, роды, лактацию, привязанность к детям и брачному партнеру. Вазопрессин влияет на эрекцию и эякуляцию у разных видов, включая крыс, людей и кроликов, а также на агрессию, территориальное поведение и отношения с женами.

Если девственной крысе ввести в мозг окситоцин, она начинает заботиться о чужих крысятах, хотя в нормальном состоянии они ей глубоко безразличны. Напротив, если у крысы-матери подавить выработку окситоцина или блокировать окситоциновые рецепторы, она теряет интерес к своим детям.

Если у крыс окситоцин вызывает заботу о детях вообще, в том числе о чужих, то у овец и людей дело обстоит сложнее: тот же самый нейропептид обеспечивает избирательную привязанность матери к собственным детям. Например, у овец под влиянием окситоцина после родов происходят изменения в обонятельном отделе мозга (обонятельной луковице), благодаря которым овца запоминает индивидуальный запах своих ягнят, и только к ним у нее развивается привязанность.

У прерийных полевок, для которых характерна строгая моногамия, самки на всю жизнь привязываются к своему избраннику под действием окситоцина. Скорее всего, в данном случае имевшаяся ранее окситоциновая система формирования привязанности к детям была «кооптирована» для формирования неразрывных брачных уз. У самцов того же вида супружеская верность регулируется вазопрессином, а также нейромедиатором дофамином (см.: Любовь и верность контролируются дофамином, «Элементы», 07.12.2005).

Формирование личных привязанностей (к детям или к мужу), по-видимому, является лишь одним из аспектов (проявлений, реализаций) более общей функции окситоцина — регуляции отношений с сородичами. Например, мыши с отключенным геном окситоцина перестают узнавать сородичей, с которыми ранее встречались. Память и все органы чувств у них при этом работают нормально.

Одни и те же нейропептиды могут совершенно по-разному действовать даже на представителей близкородственных видов, если их социальное поведение сильно различается. Например, введение вазопрессина самцам прерийной полевки быстро превращает их в любящих мужей и заботливых отцов. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Введение вазотоцина (птичьего гомолога вазопрессина) самцам территориальных птиц делает их более агрессивными и заставляет больше петь, но если тот же нейропептид ввести самцам зебровой амадины, которые живут колониями и не охраняют своих участков, то ничего подобного не происходит. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся (генетически обусловленные) поведенческие стереотипы и предрасположенности.

Этого, однако, нельзя сказать про рецепторы окситоцина и вазопрессина, которые располагаются на мембранах нейронов некоторых отделов мозга. В упомянутой выше заметке «Любовь и верность контролируются дофамином» рассказывалось о том, что ученые пытались, воздействуя на дофаминовые рецепторы, научить самца немоногамной полевки быть верным мужем, и у них ничего не вышло (я тогда заметил по этому поводу, что «нейрохимия семейных отношений продолжает хранить свои тайны»). Спустя три года (то есть уже в нынешнем году) нейробиологи все-таки подобрали к этой тайне ключик, и закоренелых гуляк превратили наконец в верных мужей. Для этого, как выяснилось, достаточно повысить экспрессию вазопрессиновых рецепторов V1a в мозге. Таким образом, регулируя работу генов возопрессиновых рецепторов, можно создать новую манеру поведения, которая в норме не свойственна данному виду животных.

У полевок экспрессия вазопрессиновых рецепторов зависит от некодирующего участка ДНК — микросателлита, расположенного перед геном рецептора V1a. У моногамной полевки этот микросателлит длиннее, чем у немоногамного вида. Индивидуальная вариабельность по длине микросателлита коррелирует с индивидуальными различиями поведения (со степенью супружеской верности и заботы о потомстве).

У человека, конечно, исследовать всё это гораздо труднее — кто же позволит проводить с людьми генно-инженерные эксперименты. Однако многое можно понять и без грубого вмешательства в геном или мозг. Удивительные результаты дало сопоставление индивидуальной изменчивости людей по микросателлитам, расположенным недалеко от гена рецептора V1a, с психологическими и поведенческими различиями. Например, оказалось, что длина микросателлитов коррелирует со временем полового созревания, а также с чертами характера, связанными с общественной жизнью — в том числе с альтруизмом. Хотите стать добрее? Увеличьте в клетках мозга длину микросателлита RS3 возле гена вазопрессинового рецептора.

Этот микросателлит влияет и на семейную жизнь. Исследование, проведенное в 2006 году в Швеции, показало, что у мужчин, гомозиготных по одному из аллельных вариантов микросателлита (этот вариант называется RS3 334), возникновение романтических отношений вдвое реже приводит к браку, чем у всех прочих мужчин. Кроме того, у них вдвое больше шансов оказаться несчастными в семейной жизни. У женщин ничего подобного не обнаружено: женщины, гомозиготные по данному аллелю, счастливы в личной жизни не менее остальных. Однако те женщины, которым достался муж с «неправильным» вариантом микросателлита, обычно недовольны отношениями в семье.

У носителей аллеля RS3 334 обнаружено еще несколько характерных особенностей. Их доля повышена среди людей, страдающих аутизмом (основной симптом аутизма, как известно, это неспособность нормально общаться с другими людьми). Кроме того, оказалось, что при разглядывании чужих лиц (например, в тестах, где нужно по выражению лица определить настроение другого человека) у носителей аллеля RS3 334 сильнее возбуждается миндалина (amygdala) — отдел мозга, обрабатывающий социально-значимую информацию и связанный с такими чувствами, как страх и недоверчивость (см. ниже).

Подобные исследования начали проводить лишь недавно, поэтому многие результаты нуждаются в дополнительной проверке, однако общая картина начинает прорисовываться. Похоже, что по характеру влияния окситоциновой и вазопрессиновой систем на отношения между особями люди не очень отличаются от полевок.

Вводить нейропептиды живым людям в мозг затруднительно, а внутривенное введение дает совсем другой эффект, потому что эти вещества не проходят через гематоэнцефалический барьер. Однако неожиданно оказалось, что можно вводить их перназально, то есть капать в нос, и эффект получается примерно таким же, как у крыс при введении прямо в мозг. Пока непонятно, почему так получается, и подобных исследований пока проведено совсем немного, но результаты, тем не менее, впечатляют.

Когда мужчинам капают в нос вазопрессин, лица других людей начинают им казаться менее дружелюбными. У женщин эффект обратный: чужие лица становятся приятнее, и у самих испытуемых мимика становится более дружелюбной (у мужчин — наоборот).

Опыты с перназальным введением окситоцина проводили пока только на мужчинах (с женщинами это делать опаснее, так как окситоцин сильно влияет на женскую репродуктивную функцию). Оказалось, что у мужчин от окситоцина улучшается способность понимать настроение других людей по выражению лица. Кроме того, мужчины начинают чаще смотреть собеседнику в глаза.

В других экспериментах обнаружился еще один удивительный эффект перназального введения окситоцина — повышение доверчивости. Мужчины, которым ввели окситоцин, оказываются более щедрыми в «игре на доверие» (этот стандартный психологический тест описан в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008). Они дают больше денег своему партнеру по игре, если партнер — живой человек, однако щедрость не повышается от окситоцина, если партнером является компьютер.

Два независимых исследования показали, что введение окситоцина может приводить и к вредным для человека последствиям, потому что доверчивость может стать чрезмерной. Нормальный человек в «игре на доверие» становится менее щедрым (доверчивым) после того, как его доверие один раз было обмануто партнером. Но у мужчин, которым закапали в нос окситоцин, этого не происходит: они продолжают слепо доверять партнеру даже после того, как партнер их «предал».

Если человеку сообщить неприятное известие, когда он смотрит на чье-то лицо, то это лицо впоследствии будет ему казаться менее привлекательным. Этого не происходит у мужчин, которым закапали в нос окситоцин.

Начинает проясняться и нейрологический механизм действия окситоцина: оказалось, что он подавляет активность миндалины. По-видимому, это и приводит к снижению недоверчивости (люди перестают бояться, что их обманут).

По мнению исследователей, перед обществом вскоре может встать целая серия новых «биоэтических» проблем. Следует ли разрешить торговцам распылять в воздухе вокруг своих товаров окситоцин? Можно ли прописывать окситоциновые капли разругавшимся супругам, которые хотят сохранить семью? Имеет ли право человек перед вступлением в брак выяснить аллельное состояние гена вазопрессинового рецептора у своего партнера?

Пока суд да дело, окситоцин продается в любой аптеке. Правда, только по рецепту врача. Его вводят роженицам внутривенно для усиления маточных сокращений. Как мы помним, он регулирует и роды, и откладку яиц у моллюсков, и многие другие аспекты репродуктивного поведения.

Политологам пора учить биологию



Аристотель, которого считают основоположником научной политологии, называл человека «политическим животным». Однако до самых недавних пор политологи не рассматривали всерьез возможность влияния биологических факторов (таких как генетическая вариабельность) на политические процессы. Политологи разрабатывали свои собственные модели, учитывающие десятки различных социологических показателей, но даже самые сложные из этих моделей могли объяснить не более трети наблюдаемой вариабельности поведения людей во время выборов. Чем объясняются остальные две трети? Похоже, ответ на этот вопрос могут дать генетики и нейробиологи.

Первые научные данные, указывающие на то, что политические взгляды отчасти зависят от генов, были получены в 1980-е годы, но поначалу эти результаты казались сомнительными. Убедительные доказательства наследуемости политических убеждений, а также других важных личностных характеристик, влияющих на политическое и экономическое поведение, удалось получить в последние 3–4 года в ходе изучения близнецов (об одном из таких исследований рассказано в заметке Доверчивость и благодарность — наследственные признаки, «Элементы», 07.03.2008).

Эти исследования показали, что политические пристрастия в значительной мере являются наследственными, но они ничего не сказали о том, какие именно гены влияют на эти пристрастия. В этом направлении пока сделаны только самые первые шаги. Удалось найти ряд корреляций между политическими взглядами и аллельными вариантами генов. Например, вариабельность гена, кодирующего дофаминовый рецептор DRD2, коррелирует с приверженностью той или иной политической партии. Правда, эти результаты являются предварительными и нуждаются в проверке.

«Политическое мышление», по-видимому, является одним из важнейших аспектов социального интеллекта (см.: Найдено ключевое различие между человеческим и обезьяньим интеллектом, «Элементы», 13.09.2007). В повседневной жизни нам (как и другим приматам) постоянно приходится решать задачи «политического» характера: кому можно доверять, а кому нет; как вести себя с разными людьми в зависимости от их положения в общественной иерархии; как повысить свой собственный статус в этой иерархии; с кем заключить альянс и против кого. Нейробиологические исследования показали, что при решении подобных задач возбуждаются те же самые участки мозга, что и при обдумывании глобальных политических проблем, вынесении суждений о том или ином политическом деятеле, партии и т. п.

Однако это наблюдается только у людей, разбирающихся в политике, — например, у убежденных сторонников Демократической или Республиканской партии в США. Демократы и республиканцы используют для генерации политических суждений одни и те же «социально-ориентированные» участки мозга. Если же попросить высказаться о национальной политике людей, которые политикой не интересуются, то у них возбуждаются совсем другие участки мозга — те, которые отвечают за решение абстрактных задач, не связанных с человеческими взаимоотношениями (например, задач по математике). Это вовсе не значит, что у политически наивных людей плохо работает социальный интеллект. Это значит лишь, что они не разбираются в национальной политике, и потому соответствующие задачи в их сознании попадают в разряд «абстрактных», и социально-ориентированные контуры не задействуются. Нарушение работы этих контуров характерно для аутистов, которые могут очень хорошо справляться с абстрактными задачами, но не могут общаться с людьми.

Крупномасштабные политические проблемы впервые встали перед людьми совсем недавно в эволюционном масштабе времени. Судя по всему, для решения мировых проблем мы используем старые, проверенные генетические и нейронные контуры, которые развились в ходе эволюции для регуляции наших взаимоотношений с соплеменниками в небольших коллективах. А если так, то для понимания политического поведения людей совершенно недостаточно учитывать только социологические данные. Политологам пора объединить свои усилия со специалистами по генетике поведения, нейробиологами и эволюционными психологами.

Источники:
1) Gene E. Robinson, Russell D. Fernald, David F. Clayton. Genes and Social Behavior // Science. 2008. V. 322. P. 896–900.
2) Zoe R. Donaldson, Larry J. Young. Oxytocin, Vasopressin, and the Neurogenetics of Sociality // Science. 2008. V. 322. P. 900–904.
3) James H. Fowler, Darren Schreiber. Biology, Politics, and the Emerging Science of Human Nature // Science. 2008. V. 322. P. 912–914.

См. также:
1) З. А. Зорина, И. И. Полетаева, Ж. И. Резникова. Основы этологии и генетики поведения.
2) Политические убеждения зависят от пугливости, «Элементы», 26.09.2008.
3) Биохимические основы любви закладываются в младенчестве, «Элементы», 02.12.2005.


Александр Марков, «Элементы»
  Ответить с цитированием
Старый 25.12.2008, 13:02   #7
Galina
Гость
 

Сообщений: n/a
По умолчанию

Как нарисовать гены



Уже прошло несколько лет после того, как был полностью расшифрован геном человека и некоторых других живых существ. Расшифровка генома поставила перед научным сообществом ещё более сложную задачу — понять, какие функции выполняют участки ДНК, называемые генами. Учёные объединённой Европы создали генетический атлас, который ответит на этот и многие другие вопросы нового этапа геномных исследований.

В 2003 году геном человека был расшифрован полностью. Это означает, что учёные теперь знают последовательность более трёх миллиардов нуклеотидов в молекуле ДНК человека. Опубликованы данные по секвенированию генома дрозофилы, нематоды, бактерии E.coli, мыши, начались работы по расшифровке генома шимпанзе. Казалось бы, зная химическую структуру ДНК, мы сможем ответить на все вопросы о том, как устроены гены. Но это далеко не так. Молекула ДНК действительно состоит из определённых участков — генов, отвечающих за синтез белковых молекул. Но последовательность генов — это ещё не геном. Например, только 25% генома человека состоит из «настоящих» генов. Две трети генома составляют регуляторные участки, «бессмысленные» последовательности, гены могут перекрываться, один ген зачастую отвечает за синтез сразу нескольких белков и т.д. В результате вместо предсказанных в 90-е годы прошлого века 100 тысяч человеческих генов в 2003 году учёные определили всего лишь около 20 тысяч смысловых генетических участков. Причём далеко не всегда понятно, где заканчивается один ген и начинается другой, как работают эти гены и за синтез каких белков отвечают. Поэтому после расшифровки генома перед молекулярными биологами открылась бездна непознанного. Теперь учёным предстоит искать смысл в «бессмысленных» участках ДНК, идентифицировать новые гены, изучать механизм регуляции уже известных генов и определять их функции.

Каждая клеточка организма живого существа содержит одну и ту же ДНК, одни и те же гены. Тем не менее белковый состав клетки, к примеру, хряща заведомо отличается от белков клеток печени или головного мозга. В чём же дело? Да в том, что в клетке синтезируются не все белки, закодированные в структуре ДНК, а только необходимые. Упрощённо, ген белка коллагена активирован (или, как говорят, экспрессирован) в соединительной ткани, но «спит» в печени; ген адреналина вовсю «работает» в надпочечниках, но «отдыхает» в клетках головного мозга и т.д. Изучением функции генов занимается функциональная геномика, которая получила огромный импульс к развитию именно после расшифровки генома.

На современной стадии развития функциональной геномики стало возможным определять, какие гены в разных участках организма экспрессированы — «работают», а какие «спят». И не просто определять, а получать трёхмерные изображения распределения активности генов во всех органах и тканях — создавать так называемые атласы экспрессии генов. В качестве модели учёные используют эмбрионы лабораторной мыши, поскольку геном мыши, секвенированный в 2004 году, состоит из практически такого же числа генов, как и геном человека. Физиология мышей сходна с физиологией приматов, на мышах можно моделировать эмбриональное развитие и генетические болезни человека.

В 2005 году профессор Грегор Эйхель разработал специальную автоматизированную технологию создания генетических атласов, которую назвал «genepaint» (англ. — рисовать ген). Сейчас профессор Эйхель — директор департамента функциональной геномики Института биофизической химии Макса Планка в Гёттингене (Германия), где расположен координационный центр теперь уже общеевропейского проекта атласа экспрессии генов. В международном постгеномном проекте Eurexpress (http://www.genepaint.org/), помимо гёттингенского института, участвуют несколько научных центров — в Берлине, Неаполе, Женеве, Страсбурге. Ещё два центра — в Эдинбурге и Цюрихе — формируют базу данных генетического атласа.

Цикл развития мышиного зародыша — 19 дней. Для генетического анализа берут 14,5- и 17-дневные зародыши мыши. Их замораживают, фиксируют в парафине. Затем из полученных образцов готовят тончайшие срезы толщиной не более 20 мкм, которые помещают на обычное препаративное стекло для исследования под микроскопом.

Как же удаётся получить изображение активности того или иного гена? Для этого в лабораторных условиях синтезируют пробу РНК одного из 20 тысяч мышиных генов, благо геном мыши расшифрован полностью, и обрабатывают ею образец ткани зародыша. Если в данном образце исследуемый ген активен — в ткани присутствуют молекулы мРНК, комплементарные пробе РНК. В результате их взаимодействия молекула РНК пробы прочно «сплетается» с мРНК ткани — происходит гибридизация.

Проба РНК помечена специальными молекулярными маркерами, которые при обработке определёнными химическими агентами дают цветную реакцию, поэтому в месте экспрессии гена ткань окрашивается в синий цвет.

Срез фотографируют в обычном световом микроскопе. Однако срезы слишком велики для того, чтобы сфотографировать их полностью, поэтому участки образца фотографируются последовательно. Все полученные снимки собираются в мозаичное изображение, которое после обработки сохраняется в формате tiff. Цифровая фотография окрашенного среза вместе с метаданными — условиями реакции гибридизации, свойствами среза эмбриона, структурой пробы РНК — поступает в базу данных Eurexpress и становится доступной для всего научного сообщества в Интернете.

Процедура обработки и фотографирования среза полностью роботизирована. В Институте биофизической химии Макса Планка получают данные о локализации 60 генов в неделю, в пяти других институтах — в два раза меньше. С января 2005-го по июль 2008 года осканировано 15 тысяч генов — 3/4 всего генома мыши.

В компьютерной базе Eurexpress хранится более 250 тысяч изображений высокого разрешения. Сейчас объём базы данных составляет более 20 терабайт, и каждый месяц база прирастает ещё одним терабайтом. Размер каждого изображения одного среза может превышать 100 МБ. Для того чтобы просматривать такие изображения в Интернете, их сохраняют на сервере в специальном формате Zoom Image Server. Программа позволяет динамически загружать интересующие участки изображения, так что становится возможным увеличить любой участок среза до его максимального разрешения.

Цель проекта — получить атлас экспрессии всех 20 тысяч генов в мышином зародыше. С помощью такого генетического атласа можно будет определить, на каком этапе развития эмбриона и в каком месте активен тот или иной ген. Это очень важно для понимания физиологической функции гена и соответствующего ему белка. Также с помощью атласа можно будет сравнить активность разных генов, причём не только мышиных, но и человеческих, в норме и патологии. Новая база данных, безусловно, продвинет знания в функциональной геномике и внесёт вклад в идентификацию генов болезней человека.


Кандидат химических наук О. БЕЛОКОНЕВА, «Наука и жизнь» № 8-2008
  Ответить с цитированием
Старый 25.12.2008, 13:04   #8
Galina
Гость
 

Сообщений: n/a
По умолчанию

Долгая жизнь прячется в генных тумблерах


Бессмертие – заветное желание человечества. И с научной точки зрения оно не является априори несбыточным. Вопрос упирается в механизм старения: деградируют ли клетки сами по себе, накапливая "мусор", или это обусловлено генетически. В последнем случае "программа смерти" теоретически отключаема. Помогут ли черви нематоды нащупать "выключатель"?

Напомним, что все формы жизни сохраняют самовосстанавливающую среду на молекулярном уровне. Однако со временем она перестаёт поддерживаться, и происходит повреждение клеточных структур, называемое оксидативным стрессом.

Последние полвека учёные пытались понять, за счёт чего происходит "смена режима" и в организме повышается выработка свободных радикалов – к примеру, активных форм кислорода.

Исследования метаболизма нематод показали, что при снижении уровня окисления срок жизни червей увеличивается. В некоторых экспериментах – почти в два раза по сравнению со "стандартом".

А с помощью анализа ДНК удалось выяснить, что старению сопутствуют какие-то изменения на генетическом уровне. Например, у мышей был локализован ген p16INK4a, способный влиять на регенерацию, – с возрастом он активизировался, приводя к деградации клеток.

Проблема в том, что привязать нарушения метаболизма к каким-то конкретным механизмам, случайным или генетически обусловленным, достаточно проблематично. "В таких случаях очень сложно сказать, где причина, а где следствие", — поясняет биохимик Брайан Кеннеди (Brian Kennedy) из университета Вашингтона (University of Washington).

Имеется в виду, что все вышеописанные негативные процессы на молекулярном уровне могут сопровождать старение, а не вызывать его.

В ходе ряда исследований уже удавалось установить, что изменения в экспрессии некоторых генов (то есть в их активности) могут повлиять на срок службы организма. Однако уверенности в том, что именно эти участки ДНК ответственны за "настоящее" старение, не было.

И вот теперь молекулярные биологи из Стэнфорда под руководством Стюарта Кима (Stuart Kim) утверждают, что им впервые удалось добыть прямые свидетельства существования генетических "программ старения". Отчёт об этой работе опубликован в журнале Cell.

Учёные провели полный сравнительный анализ экспрессии генов у молодых и старых нематод. Было выявлено около тысячи различий, которые, тем не менее, в основном контролировались лишь тремя транскрипционными факторами – ELT-3, ELT-5 и ELT-6.

Эти белки служат своеобразными "тумблерами", которые запускают передачу наследственной информации, активируя или дезактивируя отдельные гены. И алгоритм их работы у старых и молодых червей существенно отличался.

Но как проверить, что же управляет самими транскрипционными факторами – накопление вредных мутаций или наследственная программа? Для этого исследователи подвергли червей нескольким видам вредного воздействия – оксидативному стрессу, заражению вирусами и радиоактивному облучению.

Ничто, однако, на экспрессию трёх ключевых протеинов не повлияло. На основании полученных результатов учёные сделали вывод, что запуск механизмов старения обусловлен генетическими причинами. "В геноме червей предусмотрены соответствующие инструкции", — полагает доктор Ким.

Чтобы ещё раз проверить "наследственную" гипотезу, американцы нейтрализовали экспрессию двух факторов (ELT-5 и ELT-6) у червей в пожилом возрасте. В результате подвергшиеся вмешательству особи прожили в полтора раза дольше, чем их обычные собратья.

Ведущий автор исследования называет процесс изменения работы генов "дрейфом развития" (developmental drift) и связывает его с размножением: "Транскрипционные факторы ELT-3, ELT-5 и ELT-6 могут играть важную роль в развитии молодой нематоды, но после выполнения своей функции они просто-напросто перестают работать как надо – как только репродуктивный возраст подошёл к концу".

Впрочем, по мнению доктора Кеннеди, на основании полученных данных нельзя однозначно исключить и влияние клеточного "мусора", и других (отличных от выявленных) генетических механизмов. Организм – штука сложная.

С другой стороны, с выводами группы из Стэнфорда в какой-то степени согласуются данные, полученные в ходе другого эксперимента – на сей раз на людях. Его провела группа геронтологов из Тихоокеанского института исследований здоровья (Pacific Health Research Institute) во главе с Брэдли Уиллкоксом (Bradley Willcox). Отчёт об этой работе опубликован в журнале PNAS.

Гавайские учёные исследовали генетические комбинации 213 людей старше 95 лет и пришли к выводу, что определённая мутация одного из генов (его назвали FOXO3A) увеличивает шансы пережить вековой рубеж в два-три раза. "Если вы унаследовали эту комбинацию, то считайте, что сорвали джекпот", — поясняет доктор Уиллкокс.

Таким образом, гипотеза о наследственных основаниях старения вроде бы подтверждается. И это обнадеживает. В том смысле, что если можно выделить соответствующие гены, то и нейтрализовать их тоже будет возможно.

Профессор Ким, к примеру, настроен очень оптимистично. Он уверен, что "эликсир молодости" вполне можно синтезировать, если провести сравнительный анализ молекулярных комплексов старого и молодого человека – по аналогии с нематодами.

Портал «Вечная молодость» www.vechnayamolodost.ru
  Ответить с цитированием
Старый 25.12.2008, 13:05   #9
Galina
Гость
 

Сообщений: n/a
По умолчанию

Черви молодости



Биологи научились измерять истинный возраст по анализу клеток организма. Теперь любая биохимическая лаборатория сможет выяснить, насколько именно омолаживают многочисленные «омолаживающие» средства. Пока, правда, лишь для круглых червей.

Благодаря пластической хирургии, физиотерапии, диетологии и спортивным тренерам многие из нас выглядят «гораздо младше своих лет». А что такое «гораздо младше своих лет», или, кому не так повезло, «гораздо старше»? Интуитивно вполне понятно. Но ведь такая формулировка подразумевает наличие как минимум двух возрастов – «паспортного» и «биологического».

И если с вычислением первого у законопослушных граждан вопрос не стоит, то расчет «биологического», или, как его ещё называют, «физиологического» возраста – задача не из легких. Основная проблема – отсутствие конкретного определения, ведь все сравнения проводятся относительно физиологических параметров, усредненных по всей популяции.

Попытки оценить «запас прочности» организма предпринимались неоднократно, но чаще всего они сводились к оценке работы сердечно-сосудистой, мышечной и дыхательной систем. Да и то каждый пожелавший запечатлеть себя в учебнике физиологии автор не преминул воспользоваться неопределенностью ситуации.

Симон Мелов и его коллеги предложили пойти принципиально иным путем и измерять старение по активности генов. Правда, реализовать эту идею пока удалось лишь на примере круглых червей – любимца генетиков Caenorhabditis elegans.

В отличие от людей, имеющиеся в распоряжении ученых организмы живут и развиваются по очень чёткой схеме, ведь продолжительность жизни червей C. elegans, равно как дрозофил или лабораторных мышей чистых линий, можно предсказать с точностью до нескольких суток. То есть их паспортный возраст практически совпадает с возрастом биологическим, традиционно оцениваемым по подвижности и внешнему виду.

Это и позволило Мелову и соавторам публикации в специализированном журнале Aging Cell построить кривую изменения экспрессии генов в зависимости от возраста.

Измерение количества информационной, или матричной РНК (мРНК), соответствующей тому или иному гену, – самый эффективный на данный момент способ оценить «статус» процессов, происходящих в клетке. Ведь весь обмен веществ так или иначе завязан на белки, строящиеся по матрице мРНК, которая, в свою очередь, считывается с ДНК в зависимости от потребностей клетки.

Для того чтобы усреднить результаты, ученые не стали мелочиться и выделяли РНК из всего червя, попросту опуская его в пробирку целиком. Проделав это с целой сотней беззащитных созданий, генетики отобрали из 25 000 оцениваемых генов треть, активность которых действительно меняется с возрастом, как паспортным, так и «биологическим». В эту группу попали гены коллагенов – белков, определяющих прочность наших тканей, там же оказались и известные маркеры болезни Альцгеймера и ферменты, отвечающие за обмен углеводов и жиров.

Подтвердилась связь со старением генов группы daf, контролируемых белками-сиртуинами, на которые и влияет столь популярное в научной среде продление жизни за счет «ограничения калорийности диеты». Не скрылись от ученых и «гены обратного отсчета», кодирующие, помимо всего прочего, и так называемые «белки смерти», death associated protein.

Воспользовавшись этим «профилем», Мелов и коллеги попробовали вычислить возраст «диких» червей. Как и лабораторных собратьев, их тоже полностью распускали на РНК, предварительно оценивая «биологический» возраст традиционным способом. Расчет показал, что разработанный метод обладает примерно 70%-ной точностью. Весьма неплохо для первой попытки, хотя авторы и отметили, что её можно было бы существенно повысить за счёт увеличения числа «участников» эксперимента и оцениваемых физиологических параметров.

У нового метода оценки возраста есть не только общенаучные или лабораторные, но даже маркетологические последствия. Ведь с его помощью можно проверить, насколько эффективны предлагаемые методы продления жизни и «омоложения» организма.

Проводившиеся до сих пор эксперименты, как правило, демонстрировали возрастание хронологических и лишь изредка репродуктивных показателей. А ведь основная цель геронтологии – увеличение «активного периода», во время которого старики по паспорту действительно являются полноценными членами общества, не страдающими от возрастных изменений тела и ума.

Ожидать повторения подобной работы на людях пока не приходится, ведь в таком случае придется забирать десятки биопсий и тысячи клеток из разных органов и тканей нашего организма, после чего сравнивать данные полимеразной цепной реакции с измерениями физиологических показателей. И ведь никто не гарантирует, что удастся обнаружить хоть какую-то зависимость.

Пётр Смирнов, «Газета.Ru»
  Ответить с цитированием
Старый 25.12.2008, 13:07   #10
Galina
Гость
 

Сообщений: n/a
По умолчанию

В старческой глухоте виноват не возраст, а ген


Многие пожилые люди страдают от ослабления слуха. Возрастная тугоухость – это болезнь со сложным названием пресбиакузис. Она выражается в том, что человек начинает хуже слышать высокочастотные звуки. Самое простое – связать подобный недуг с образом жизни или просто со старением. Но, оказывается, у него есть и генетическая подоплека. Доказать ее наличие удалось стандартным методом – изучением близнецов. Правда, никто и представить себе не мог необходимость подобного анализа. Поэтому до сих пор полномасштабного генетического исследования возрастной тугоухости никто и не проводил.

Первыми додумались до нового подхода к тугоухости специалисты Института слуха при Исследовательском центре клеточной и молекулярной биологии имени Гонда (House Ear Institute, Gonda Research Center for Cell and Molecular Biology). Специалисты из Лос-Анджелеса работали вместе с Институтом трансляционных геномных исследований (Translational Genomics Research Institute) и Университетом Антверпена (Бельгия).

Они изучили 3434 близнецов – пациентов восьми медицинских центров шести европейских стран в возрасте от 53 до 67 лет. Оценив стандартными методиками уровень слуха, медики отобрали 846 пар, в которых один из братьев (сестер) нарушением слуха, а второй – нет.

Родственные геномы пометили множеством генетических маркеров и начали сравнительный анализ. Ученые искали места с разными нуклеотидами в одних и тех же генах. И несколько таких генов найти удалось. Методом исключения в итоге остался только один кандидат. Это ген GRM7 , который участвует в метаболизме глутамата – он кодирует один из рецепторов данной аминокислоты.

Глутамат (или глутаминовая кислота) – важнейший возбуждающий нейромедиатор в нервной системе млекопитающих. Он работает в разных отделах головного мозга, обеспечивая передачу нервного импульса. Исследование на мышах и человеке показало, что ген GRM7 активно работает в волосковых клетках и спиральных ганглиозных клетках внутреннего уха. В то же время в высокой концентрации глутамат очень токсичен. Если его слишком много, происходит перевозбуждение нейронов вплоть до их гибели.

Похоже, именно избыток глутамата и стал причиной тугоухости близнецов, считают авторы работы. Генетический анализ показал, что при снятии «белковых слепков» с некоторых вариаций гена GRM7 получается неправильно работающий рецептор глутамата. Из-за чего, видимо, аминокислота накапливается в синаптической щели и повреждает волосковые клетки в улитке внутреннего уха. Они выполняют очень важную роль – преобразования механических колебаний в электрический импульс. На серьезной стадии развития болезни количество волосковых клеток в улитке уменьшается более чем вдвое.

По данным ВОЗ, во всем мире около 600 миллионов людей старше 65 страдают от ослабления слуха, а к 2020 году, по прогнозам, их будет более 1 миллиарда. И авторы надеются, что их открытие позволит найти эффективные средства их лечения. На следующем этапе они собираются разработать лабораторную модель на животных для оценки перспективных фармакологических препаратов.

Источник: Лига слуха
  Ответить с цитированием
Ответ

Закладки


Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход


Часовой пояс GMT +3, время: 04:31.


Powered by vBulletin® Version 3.8.2
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. Перевод: zCarot
Rambler's Top100 Республика Татарстан - Каталог сайтов